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Abstract

This thesis lies in the framework of the p-adic Langlands programme, whose goal
is to deepen our understanding about fundamental problems in number theory, such
as the solution of Diophantine equations, the study of elliptic curves, and the study
of Shimura varieties. The Langlands programme aims at creating a correspondence
between certain representations of Galois groups and certain representations of the
Adelic points of suitable reductive groups. An important and interesting particular
case is class field theory, in which such a correspondence has been established,
between characters of the Galois group and Dirichlet characters of the Ideles.

As a part of the Langlands programme, Robert Langlands has introduced the
Local Langlands Conjectures, which describe a correspondence between complex
representations of a reductive algebraic group G over a local field F and homomor-
phisms of the Galois group of F into the L-group of G. These conjectures have been
proven for G = GL(n) and for several other cases. This correspondence is preserved
in [-adic representations, where [ is not the characteristic of the residue field of F.
However, when ! = pis the characteristic of the residue field of F, this correspondence
no longer holds.

The purpose of the p-adic Langlands programme is to create a similar correspon-
dence between some of the p-adic representations of the reductive group, and some
of the p-adic representations of the Galois group. Such a correspondence has been
shown for G = GL(2) when the field is Q,. In this case, the representations of G
which took part in the correspondence were Banach spaces with a G-invariant norm.
In the cases where the representation of the Galois group is geometric, these spaces
have algebraic vectors (that the G-action on them is locally polynomial) which form
a locally algebraic representation of G with a G-invariant norm, dense in the original
Banach space.

The relation between these spaces and the representations of the Galois group
raised the possibility of generalizing the correspondence to other fields or other
groups by looking at the locally algebraic representations of the reductive group G,
finding G-invariant norms and completing with respect to these norms to obtain
Banach Spaces which are the candidates to correspond to the appropriate represen-
tations of the Galois group.

Therefore, Breuil and Schneider conjectured a criterion for the existence of an in-
variant norm in a p-adic representation of the group G = GL(n), and even generalized
it to an arbitrary split reductive group.

In this work, we prove several special cases of this conjecture. The problems



considered here can be classified into two interconnected topics — the existence of
invariant norms in locally algebraic representations of GL(2) over a local field, and
the existence of invariant norms in locally algebraic representations of U(3) over a
local field.

The methods employed in this thesis can also be classified into two essential
types - one method is reduction of the problem to pure p-adic analysis, which we
could only perform for G = GL(2), while the other methods use the homology of
the Bruhat-Tits tree of the reductive group G, and could be generalized to arbitrary
unramified groups by employing similar methods on the Bruhat-Tits building, with
increasing technical difficulty.

In Chapter 2, we prove the existence of an invariant norm in locally algebraic
representations of GL(2) over a local field, when the Breuil-Schneider criterion holds,
for unramified representations of small weight, and for smooth tamely ramified
representations. Even though both results have been known before, each result was
proved in a different method, and this is the first method proving both.

In Chapter 3, we prove the existence of an invariant norm in locally algebraic
representations of GL(2) over a local field, when the Breuil-Schneider criterion holds,
for some unramified representations of higher weights. Apart from the restriction
on the weight, we have here a technical restriction on the representation, which we
could not remove, but we estimate that it is purely technical.

In Chapter 4, we prove the existence of an invariant norm in locally algebraic
representations of U(3) over a local field, when the Breuil-Schneider criterion holds,
for unramified representations of small weight, and for smooth tamely ramified
representations. Each result is achieved using a different method.

None of the chapters have been published yet.
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1 Introduction

The p-adic local Langlands programme

Let p be a prime number, and let n be a positive integer. Let F be a finite extension of Q,,
and let Wi be the Weil group of F. Let [ be a prime number, such that [ # p.

Local class field theory gives an isomorphism between the abelianization of the Weil
group, W# and the multiplicative group F*. Equivalently, we have a natural bijection
between complex (resp. [-adic) continuous characters of Wr and complex (resp. [-adic)
smooth characters of F*.

This theory has a non-abelian generalization, the local Langlands correspondence. The
(classical) local Langlands correspondence for GL, over p-adic fields, proved by Harris
and Taylor [16], by Henniart [17], and later by Scholze [23] asserts the existence of a
canonical bijection between the set of isomorphism classes of irreducible continuous
complex (resp. continuous /-adic, see Vigneras [27]) representations of W of dimen-
sion n and the set of isomorphism classes of complex (resp. [-adic) smooth irreducible
supercuspidal representations of GL,(F).

This correspondence is moreover compatible with reduction modulo / ([25]) and with
cohomology ([16]).

The original aim of the local p-adic Langlands programme is to look for a possible p-adic

analogue of the classical and /-adic correspondence, stated in the previous subsection.

Note that when considering continuous p-adic representations, Grothendieck’s [-adic
monodromy theorem no longer holds, and we might have wild ramification that cannot
be solved by passage to a finite extension of F. This shows that we have a richer category
of representations of Wr in the p-adic case, while the category of smooth representations
of GL,(F) does not see the field of coefficients, hence remains the same. This suggests that
one needs to enlarge the category considered on the reductive side, and that one indeed
needs a p-adic correspondence, which essentially differs from the I-adic correspondence.

The local p-adic correspondence for GL,(Q,) was fully developed, essentially by Berger,
Breuil and Colmez in [2], [8] and completed by Colmez, Dospinescu and Paskunas in
[9], using the theory of (¢, I')-modules.

The p-adic local Langlands correspondence associates to certain 2-dimensional contin-



uous representations of Gal(@p /Q,), certain Banach spaces equipped with a unitary

continuous action of GL,(Q,). It has three important compatibility properties:

e compatibility with reduction modulo p [1]
e compatibility with classical local Langlands correspondence [8, 12]

e Jocal-global compatibility with completed étale cohomology [12]

These properties already have remarkable global applications. For example, Kisin
shows in [20] that the compatibility with the classic local Langlands correspondence,
under some weak technical assumptions, implies the Breuil-Mézard conjecture on mod-
ular multiplicities [5]. Combined with the proof of Serre’s modularity conjecture by
Khare-Winterberger-Kisin, Emerton’s local-global compatibility then allows one to prove
many cases of the Fontaine-Mazur conjecture, which characterizes the representations

of Gal(ﬁ/ Q) arising from classical modular forms.

If F is a finite extension of Q,, it is natural to ask how to associate p-adic representations
of GL,(F) to 2-dimensional p-adic representations of Gal(F/F). This problem turns out
to be far more delicate when F # Q, and even the theory modulo p for GL,(F) is very
much involved. Furthermore, as Colmez’s technique in [8] specifically associates to a
(p,T')-module a 2-dimensional representation of the Galois group, it is not clear yet how
to approach the case of GL,(F) for n > 2, even when F = Q,, or more generally, the
F-points of an arbitrary reductive group G.

In order to obtain a first approximation to what we might expect in such cases, we
will first introduce some notions regarding Banach space representations of reductive
groups, and then recall some of the constructions arising whenn =2 and F = Q,.

Representations of Reductive Groups

Let C be a field of characteristic 0, used as the field of coefficients.

Let G be a connected reductive group defined over F, a finite extension of Q,, and set
G = G(F).

Definition 1. Smooth Representation

A representation 7t : G — GL(V) on a C-vector space V is called smooth if the stabilizer of each
vector v € V is open in G.



Definition 2. Smooth Admissible Representation

A smooth representation  : G — GL(V) on a C-vector space V is called admissible if for every
open subgroup H C G the space V! of H-invariants in 'V is finite-dimensional.

The following theorem is highly important in the development of the theory of smooth
representations, and was proved by Jacquet in [19]

Theorem 3. Let (1, V) be an irreducible smooth representation of G. Then (t, V) is admissible.

We now focus our attention on the case where C is p-adic.

Assume from now on that C is a finite extension of Q,, Oc its ring of integers. Let @ € Oc
be a uniformizer, and k¢ = Oc/@Oc the residue field, of cardinality 4. Let | - | denote the

absolute value on C, normalized so that |@| = 7.

As we mentioned before, in this case, it is reasonable to introduce larger classes of rep-
resentations, since enriching the category of representations of the reductive groups is
necessary for extending the local Langlands correspondence to p-adic Galois representa-
tions. First, as in the [-adic case (see Vigneras, [27]), we introduce the notion of a unitary

Banach space representation.

Definition 4. Unitary Banach Space Representation

Let (V|| - 1I) be a Banach C-vector space. A Unitary C-Banach space representation of G (on
V) is a G-action by continuous linear automorphisms such that the map G X V. — V giving the
action is continuous, and given by isometries, i.e. forall g € Gandallv € V

ligell = [loll.

In order to motivate what follows, we would like to mention two pathologies of Banach

space representations:

e There exist non-isomorphic topologically irreducible Banach space representations
V and W of G for which nevertheless there is a nonzero G-equivariant continuous
linear map V — W (similarly to the case of real Lie groups).

e Even such a simple commutative group such as G = Z, has infinite dimensional
topologically irreducible Banach space representations (see [11]).



It is clear that in order to avoid such pathologies we have to impose an additional
finiteness condition on our Banach space representations. This condition will be called
admissiblity, and in a series of papers, Schneider and Teitelbaum found out what seems
to be the right notion (see [21]).

Definition 5. Admissibility

Let G be a finite dimensional p-adic Lie group. A C-Banach space representation V of G is
called admissible if there is a G-invariant bounded open lattice L C V such that for any open
normal subgroup H C G the kc-vector space (L/®L)" of H-invariant elements in L/®L is finite
dimensional.

We point out that this condition implies that V is admissible if and only if there is
a G-invariant bounded open lattice L C V such that L/@L is an admissible smooth

representation of G over the residue field «c.

The following proposition, which is proved by Schneider and Teitelbaum in [21, Lemma
3.4] and the discussion following it, shows that it is enough to check the condition for a
single open normal subgroup H C G whichis pro-p. Moreover, Schneider and Teitelbaum
show that if one considers the invariants by such an open normal pro-p subgroup, one

can take any open G-invariant lattice.

Proposition 6. Let V be a C-Banach space representation of G. Let H C G be an open normal
pro-p subgroup. Assume that there is a G-invariant bounded open lattice L C V such that the
kc-vector space (L/@L) of H-invariant elements in L/®L is finite dimensional. Then V is
admissible.

Conversely, if V is admissible, then for any G-invariant bounded open lattice L C V, the xc-vector
space (L/®L)" of H-invariant elements in L/@L is finite dimensional.

The p-adic local Langlands correspondence for GL,(Q,) (see [2], [8] and [9]) gives a bijec-
tion between isomorphism classes of 2-dimensional absolutely irreducible continuous
representations of Gal(Q_p/ Q,) over C and isomorphism classes of absolutely irreducible,
non-ordinary, admissible unitary Banach representations of GL,(Q,) over C.

Restricting the bijection to the potentially semi-stable Galois representations, with dis-
tinct Hodge-Tate weights, one obtains an important subcategory on the reductive side,

consisting of completions of irreducible locally algebraic representations.

For this reason, we proceed to define locally algebraic representations. But first, let us
define an algebraic representation.

10



Let
a = (RESF/Qp G)C

be the reductive group over C obtained by base extension from the Weil restriction from
F to Q, of G. Write
G := G(C) = G(F ®q, O).

The ring homomorphism F — F ®q, C which sends 4 to 2 ® 1 induces an embedding of
groups G <= G.

Definition 7. Let (7, V) be a representation of G on a C-vector space. Then t is algebraic if
there is a rational representation T of G on V such that t is the pullback of T via G — G.

We now turn to the definition of a locally algebraic representation.

Definition 8. Let (1, V) be a representation of G over C. We say that v € V is locally algebraic
if there exists a compact open subgroup K, C G and a finite dimensional subspace U C V
containing the vector v such that K, leaves U invariant and operates on U via restriction to K, of
a finite dimensional algebraic representation of G. We denote by V¢ C V the subspace of locally
algebraic vectors. If V = V8, we say that V is locally algebraic.

An important result, proved by Prasad in [22, Appendix], gives an explicit description

of the irreducible locally algebraic representations of G.

Theorem 9. Let 1t be an irreducible locally algebraic representation of G. Then there is an
irreducible algebraic representation T of G, and an irreducible smooth representation o of G, such
that m = © ® 0. Conversely, if T and o are as above, then 1 is an irreducible locally algebraic
representation of G.

This will allow us to restrict our attention mostly to representation of the form n = T ®o.

The Breuil-Schneider Conjecture

We would like to formulate a p-adic correspondence for arbitrary n and F. In order to
have an idea as to how such a correspondence should be obtained, let us take another

look at the construction of the correspondence for GL(Q,).

In general, for potentially semi-stable n-dimensional continuous representations of the

absolute Galois group Gal(F/F), it is possible to attach a smooth representation ¢ = o(p) of

11



GL,(F), as in the classical case. However, p ~» 0(p) is no longer reversible. Nevertheless,
as the coefficient field is now an extension of Q,, if we assume that p has distinct Hodge-
Tate weights, we may also construct an irreducible algebraic representation t = 7(p) of
GL,(F) from the Hodge-Tate weights of p. We will specify the explicit construction when
formulating the conjecture subsequently.

Still, one cannot reconstruct p from o(p) and 7(p). The problem is that the semi-stable
representations p are classified by their filtered (¢, N)-modules, and not only by their
(¢, N)-modules and the Hodge-Tate weights. The Hodge filtration is lost when con-
structing the representations 7(p) and o(p). Note that as the coefficient field is p-adic,
these two representations live in the same universe, and it makes sense to consider the
representation m = 0 ® 7. These representations are no longer smooth, neither are they

algebraic, but they are locally algebraic.

The p-adic local Langlands correspondence for GL,(Q,) takes any continuous represen-
tation p : Gal(@p /Qp) — GLZ(@p) and attaches to it a unitary Banach space Il(p) with an
admissible unitary GL,(Q,)-action. This map p ~» II(p) is reversible, and compatible
with classical local Langlands in the following sense: When p is potentially semistable
with distinct Hodge-Tate weights,

I(p)™ = 7(p) ®g, 9(p)

Furthermore, I1(p)"¢ = 0 otherwise (see [8, Theorem V1.6.13]).

When p is irreducible, I1(p) is known to be the completion of 7(p) ®@p o(p) relative to a
suitable GL,(Q,)-invariant norm |||| which corresponds to the lost Hodge filtration.

As for a general field F, if p : Gal(F/F) — GLn(@p) is potentially semi-stable , one can
define the representation m = BS(p) := 7(p) ®@p o(p). This representation is a dense
subrepresentation of a unitary GL,(F) Banach representation I'l(p) if and only if it admits
a GL,(F)-invariant norm.

This suggests, at least as a first approximation, that the existence of such an invariant
norm will be equivalent to having a representation corresponding to a potentially semi-

stable representation.
We now formulate the conjecture more precisely.

Let G = GL,(F), n > 2. Let F’ be a finite Galois extension of F, and F;) its maximal
unramified subfield. Assume [F : Q,] = [Homg,(F,, C)| and let p/’ be the cardinality

12



of the residue field of F, and ¢, the Frobenius on F (raising to the p-th power each
component of the Witt vectors).

Let Modp r be the category of discrete finite dimensional (¢, N, Gal(F’/F))-modules. Let
WDy ¢ be the category of finite dimensional Weil-Deligne representations over C which
are unramified when restricted to W(F/F’). Fontaine, in [14], constructs a functor WD :
Modp ;r — WDp;r which induces an equivalence of categories.

Now, if (p, N, V) is an object of WD ;¢ such that p is semisimple, we have by the classical
local Langlands correspondence, a smooth irreducible representation of G over @p, o't
corresponding to (p, N, V), normalized so that the central character of ot is det(r, N, V) o
Arty!, with Artp being Artin’s reciprocity map from local class field theory, sending
uniformizers to geometric Frobenii. Note that 0" depends on a choice of g'/? in @p.

Breuil and Schneider in [6] construct a modification, o of ", which does not depend

1/2

on the choice of 7/, and is a smooth representation of G over C. If (p, N, V) is an object

of WDr,r we denote by (p, N, V)* its p-semisimplification.
Conjecture 10. The Breuil-Schneider Conjecture

Fix an object (p, N, V) of WDpp such that p is semisimple. For each 1 : F — C, fix a list of n
integers iy, <ip, < ... <1y, Let o bethesmooth representation of G over C described above. Let
aj, = —iys1-j, — (j — 1) and denote by T the unique Q,-rational representation of G over C such
that T = ®,7, with 7, of highest weight (ay,,...,a,).

The following conditions are equivalent:

1. There is an invariant norm on T Q¢ o.

2. Thereis a (p, N, Gal(F’/F))-module D such that
WD(D)* = (p,N, V)

and an admissible filtration (Fil'Dp);, preserved by Gal(F’'/F) on Dy := F' ®¢, D such
thatVi: F — C
Fil'Dp ,JFil*'Dp, 20 & i€ {i1y, ..., i}

This asserts that the existence of an invariant norm on T1®c o is equivalent to the existence
of a (weakly) admissible filtered (¢, N, Gal(F’/F))-module, the semisimplification of its
image being (p, N, V), namely (p, N, V) is becoming semi-stable over F’.

13



By the equivalence of categories stated by Fontaine, and proved by Colmez-Fontaine,
the conjecture predicts that the existence of an invariant norm on 7 ®c o is equivalent to
the existence of a potentially semi-stable representation V of ¢ of dimension n over C,
such that its Hodge-Tate weights are the —i;, and such that the p-semisimplification of
its associated Weil-Deligne representation has ¢ as a Langlands parameter (modified as

above).

The “if” part is completely known for GL,(F) ([18]), and is due to Y. Hu. The “only if”

part remains open, even for n = 2.

Next, we introduce the notion of an integral structure, whose existence in a representation

is equivalent to the existence of a G-invariant norm.

Definition 11. Integral Structure

Let V be a representation of G on a C-vector space. An integral structure in V is an Oc[G]-
submodule which spans V over C and contains no C-line.

An integral structure is also referred to in the literature as a separated lattice.

Note that asking for a norm in a representation V over C, a finite extension of F, amounts
to asking for an integral structure, that is a sub-Oc[GL,(F)]-module generating V over

C which contains no C-line: Given a norm || - ||, the unit ball is an integral structure.

—vA (%)
C

x € @’A} is a norm. Thus we are looking for integral structures in locally algebraic

Conversely, given an integral structure A, its gauge ||x|| = g , Where v, (x) = sup{v |

representations of GL,(F).

The equivalence of norms gives rise to an equivalence relation on lattices, called com-
mensurability. Explicitly, two integral structures in a representation are commensurable
if each of them is contained in a scalar multiple of the other. Note that any two finitely
generated integral structures are commensurable, hence of minimal nonzero commen-

surability class.

Already in [6], the authors discuss a generalization to the case of an arbitrary split
reductive group G. In fact, they construct a Banach space for any pair (&, () where £ is a
dominant weight of the split torus T and C € T”, the torus of the Langlands dual group.
Given this pair, they construct a family of p-adic Galois representations with values in the
Langlands dual group G’. Conjecture 10 is then equivalent to asserting that this Banach
space is nonzero for G = GL,(F). We note that this conjecture can be formulated purely
in terms of the reductive group G, ignoring the original Weil-Deligne representation. In

14



order to do so, we recall Emerton’s treatment of these ideas ([13]).

Emerton’s condition and arbitrary reductive groups

In [22], Prasad shows that any irreducible locally algebraic representation of a p-adic
reductive group, G, is of the form o ® t with o smooth and 7 algebraic. Moreover,
V = 0 ® 7 is irreducible if and only if both ¢ and 7 are irreducible. If V admits a G-
invariant norm, the central character must be unitary. Let P be a parabolic subgroup of
G, with unipotentradical N and Levi quotient M. Let Ny be some compact open subgroup
of N. Let 6 denote the modulus character of P (which is trivial on N, and so induces a
character of M = P/N, which we also denote by §; concretely, 5(m) = [mNom™ : Ng]). Let
Jp(V) denote Emerton’s Jacquet module (with respect to P) of V,i.e. if V = 0 ® 7, then

Jp(V) = ™ ®¢ (resSo)no'?
Let Zy; be the center of M. Write Z7, :={z € Z | zNyz™! € Np).

Lemma 12. (Emerton)

Let x be a locally algebraic C-valued character of Zy. If the x-eigenspace of Jp(V) is nonzero, and
V admits a G-invariant norm, then

x@07'@)| <1 VzeZz;,

In [18], Hu shows that this is equivalent, in the case of GL,(F), to the requirement that
V arises from a potentially semi-stable Galois representation. Thus, it makes sense to

reformulate the conjecture for arbitrary reductive groups.

Conjecture 13. Assume that for any locally algebraic character x : Zyy — C* with [p(V), # 0,
x@067'(2)| <1 VzeZj,

and that the central character of V is unitary. Then V admits a G-invariant norm.

15



Progress on the Breuil-Schneider conjecture

e Note that the central character of BS(p) always attains values in OF. Sorensen ([24])
has proved for any connected reductive group G defined over Q,, that if 7 is an
irreducible algebraic representation of G(Q,), and ¢ is an essentially discrete series
representation of G(Q,), both defined over C, then 7 ®c 0 admits a G(Q,)-invariant

norm if and only if its central character is unitary.

e On 2013 there has been spectacular progress on the BS conjecture in the principal
series case, which is the most difficult, by joint work of Caraiani, Emerton, Gee,
Geraghty, Paskunas and Shin ([7]). Using global methods, they construct a candi-
date I'l, which could depend on some global data in addition to p, for a p-adic local
Langlands correspondence for GL,(F) and are able to say enough about it to prove
new cases of the conjecture. Their conclusion is even somewhat stronger than the

existence of a norm on BS(p), in that it asserts admissibility.

Both works employ global methods, and as this is a question of local nature, we believe
that there must be some local method to recover these results. There has also been some
progress employing local methods, which yields results also for finite extensions of Q,,

namely:

e For GL,(F), Vigneras ([26]) constructed an integral structure in tamely ramified
smooth principal series representations, satisfying the assumption that they arise

from p-adic potentially semistable Galois representations.

e For GL,(Q,), Breuil ([4]) used compact induction together with the action of the
spherical Hecke algebra to produce a separated lattice in BS(p) where = = BS(p) is
an unramified locally algebraic principal series representation, under some tech-
nical p-smallness condition on the weight. This was later generalized to GL,(F) by
de Ieso ([10]).

e For general split reductive groups, Grofie-Klonne ([15]) looked at the universal
module for the spherical Hecke algebra, and was able to show some cases of the
conjecture for unramified principal series, again under some p-smallness condition

on the Coxeter number (when F = Q,) plus other technical assumptions.

16



New cases of the Breuil-Schneider conjecture

Let p be a prime number. Let F be a finite extension of Q,. Fix a uniformizer @ of F, and
let g be the cardinality of its residue field kr = Op/@Op. Let vp : F* — Z be the valuation
on F normalized so that vr(@) = 1. Let C be a finite extension of F. Here and in what
follows, we fix one embedding F < C and consider the special case of Conjecture 10

where the algebraic representation 7 is trivial for the other embeddings.
Let G be a reductive group over F and let G = G(F) be the group of its F-points.

In this work, we consider the principal series representations of the reductive groups G,
and prove the existence of invariant norms in some of these representations. The case
of locally algebraic principal series representations seems to be the most difficult when

considering the existence of G-invariant norms, or equivalently an integral structure.

Quite generally, if G is an arbitrary reductive group, and m = 7 ® o is an irreducible
locally algebraic representation of G = G(F), the simpler o is algebraically, the harder the
question of existence of G-invariant norms in 7 becomes. An obvious necessary condition
is for the central character of 7 to be unitary, i.e. attain values in OF. Assume therefore
this is the case. If ¢ is supercuspidal (its matrix coefficients are compactly supported
modulo the center), the existence of a G-invariant norm is obvious. As mentioned
above, using global methods and the trace formula, existence of a G-invariant norm can
also be proved when o is essentially discrete series (its matrix coefficients are square
integrable modulo the center) [24]. In these cases, no further restrictions are imposed on
7t. At the other extreme stand principal series representations, where one should impose
severe restrictions on 7, and the problem becomes very difficult. We therefore focus our

attention on these representations.

In this thesis we show the existence of a G-invariant norm by showing the existence of an
integral structure, hence the completion with respect to the resulting norm is nonzero.
However, we do not show admissibility of the resulting completion. In some cases,
we consider a finitely generated integral structure, hence the resulting completion is
necessarily the universal completion, which is known to be non-admissible, for example,
when F # Q, (see [3]).

We consider two specific groups - the group GL,(F) is considered in chapters 2 and 3,
while in chapter 4 we consider the unitary group Us(F).
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Studying the Kirillov Model for GL,(F)

In chapter 2, we provide a proof of two results, which were until now proved in two
different methods, using a unified and new framework. We prove the Breuil-Schneider
conjecture for both smooth tamely ramified principal series representations and unram-
ified locally algebraic principal series representations of small weight. This is achieved
by looking at the Kirillov model of the representation, and transforming the question on

integral structures to a problem in p-adic analysis.

In order to state the result more precisely, let x1, x» be smooth characters of F* attaining
values in C*, let B be the Borel subgroup of upper triangular matrices in G = GL,(F) and
let

0 = Indg(x1, Xx2)
be the smooth (not normalized!) principal series representation induced from the char-
acter x; ® X2, viewed as a character on the torus of diagonal matrices, and inflated to

B. Explicitly, we require f(bg) = (x1 ® x2)(b) - f(3)V¥b € B, g € G. Assume that x, x» are
chosen such that o is irreducible. Fix integers m and n > 0, and let

T = det(-)" ® Sym"

where Sym" denotes the n-th symmetric power of the standard representation of G. We
use the space of univariate polynomials of degree at most n, C[u]*", as a model for the
representation Sym”".

The Breuil-Schneider conjecture for m = 7 ® o asserts that = admits an integral structure

if and only if the following two conditions are satisfied:

=1

(i) |X 1(@)x2(@)*""

(i) 1< @a" <[g o™

It is known that these two conditions are necessary. In Chapter 2, we prove the following
theorem.

Theorem 14. Assume that (i) and (ii) are satisfied. Assume, in addition, that either
(1) x1 and x, are unramified and n < g, or

(2) x1 and x, are tamely ramified and n = 0.
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Then 1t admits an integral structure.

Each of the cases (1) and (2) was already known ([26], [4], [10]), but treated separately.
Here, using the study of the Kirillov model of the representation 71, one can transform
the problem to a problem in p-adic functional analysis, and use it to prove both cases.
The restrictions on ramification level and algebraic weight are also needed in the afore-
mentioned works. In fact, this is true even though Breuil, de Ieso and Vigneras all use
the method of compact induction, working on the Bruhat-Tits tree of G = GL,(F), while

our approach takes place in a certain dual space.

The Kirillov model X of 7t is the space of functions on F*
X =Co(FExn + CC(FE Dwxz

where w is the norm character, namely the unramified character satisfying w(®@) = q7%,
and CZ(F, 7) is the space of smooth compactly supported functions on F with values in
7. For the action of G on this model, see Chapter 2, Section 1.3.

Fourier analysis implies that an arbitrary function ¢ € X may be expanded annulus-by-

¢ = i Y. G

I=ly ﬂEF/Op

annulus as

for some [y € Z, some predetermined functions ¢, € CZ°(F, C), which are supported on
@' 0% and the coefficients C(f) € 1 satisfy certain explicit recursion relations.

The theorem is based on the following observation. Let the assumptions be as in the
theorem. If V; is an O¢[G]-module spanned by a nonzero vector in the Kirillov model X,
one can find a family of Oc-lattices (Mo (f))ger/o; in T, such that if ¢p € V,, vanishes outside
of Op, it has an expansion as above with Cy(8) € M(p) for all p.

We note that while this claim is sufficient to prove the theorem, it is not clear that they

are equivalent.

The first step in the proof of this theorem is standard, showing commensurability be-
tween Vj and a certain Oc[B]-module of finite type A, which is spanned by an explicit
set of nice functions €. If one considers ¢ € A and expresses it as a linear combination of
the functions in €, and expand it annulus-by-annulus, the C;(f) satisfy certain recursive
relations. If one further assumes that ¢ vanishes away from O, we must have some

cancellation. By increasing induction, one shows that for / < 0, the C;(8) belong to a
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certain Oc-lattice M;(p) in 7, which depends on ! and f3, but not on ¢.

The main phenomenon which assists us in establishing the theorem is that there are two
distinct families of lattices, which coincide when n < g. In fact, for any € F/Or and any

integer [, one may define the disc
Dip) ={a e Fl|a-a'p| <o’

and consider
Ni(p) = {P € Clul*" | [IP(@)| < || ™ Yo € Dy(B)}

This family of lattices has the nice property that for any y € F/Or we have

Ni(B) = @"Npa(y) (1)
{BEF/OFInp=y}

Similarly, one may define
Mi(B) = Spano, {(@-l)”‘i (- p) 10<i< n}
This family of lattices has the nice property that
M;(B) € My (@p). 2)

When n < g, it turns out that M;(8) = N;(8). In this case, both properties combined with

the recursive relations on the coefficients, suffice to establish the proof.

However, when n > g, this is no longer the case. In fact, if one begins with a family
of lattices M;(f), we may modify it either to satisfy property (1) or property (2), call the
resulting families M? (B) and M (B) respectively.

It turns out that if n > g the process of performing the b and § operations alternately
results in modules which contain a C-line. This means that the approach taken here of
using these properties combined with the recursive relations, essentially fails for n > g.

The other drawback of this approach is that the Kirillov model has such an explicit
description as a space of functions only for G = GL,(F). For other reductive groups,
working with the Kirillov model is much more difficult, and no longer reduces the

problem purely to functional analysis. Furthermore, in the case of G = GL,(F), the
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Kirillov model can be identified with a Fourier transform of the standard model (up to
multiplication by a character). For other reductive groups, this is no longer the case, and
when the unipotent radical of B is no longer abelian, a possible approach is to replace
the Kirillov model with the non-abelian Fourier transform of the standard model, which

again is much more complicated.

Large Algebraic Weights for GL,(F)

Although many results were obtained for representations of GL,(F), it has been very
difficult to prove the existence of GL,(F)-invariant norms in locally algebraic representa-
tions of large weights, and all results known so far have severe restriction on the weights.
In Chapter 3, we provide a proof of several results, establishing the existence of GL,(F)-
invariant norms in many unramified locally algebraic representations of large weights.
We employ methods developed by Breuil in [4] and by de Ieso in [10].

Keeping notations, we let 7 = det(-)" ® Sym", and writen = d-q+r with 0 <r < q.
We also seta = (x;{'(@) + 9 x;'(@)) - @™ € C. We further denote by e the ramification
degree of F over Q,. In this case, the Breuil-Schneider conditions are equivalent simply

toa € Oc. Then the main theorem we prove in Chapter 3 is

Theorem 15. Assume that one of the following conditions is satisfied:
() n < 1g* withr < q —d and ve(a) € [0, 1].

(i) n < 1g* with 2vp(a) — 1 <r < q —d and ve(a) € [1, e].

(iii) 7 < min (p q-1, %qz), withd — 1 < rand ve(a) > d.

Then 1 admits an integral structure.

The proof of this theorem relies on the ideas of Breuil in [4], and it is highly technical and
involved. The main idea is looking at p as a quotient of the universal spherical module
for compact induction. This universal module has a natural integral structure, whose
image under the quotient map is an excellent candidate to be an integral structure in p.
The quotient is formed using the Hecke algebra, and the analysis is performed on the
Bruhat-Tits tree of G = GL,(F).

In fact, if 7 is the Oc-points of the algebraic representation 7, it can be viewed naturally

as a lattice in 7, which gives rise to the lattice ind%z(fo) in indgz(’c), where K = GL,(0Op) is
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the standard maximal compact subgroup, Z = Z(G) is the center of G, and indS, is the

functor of compact induction.

Now, the representation ind%Z(T) can be viewed as functions on the vertices of the Bruhat-
Tits tree, taking values in 7 (up to a choice of a representative at each vertex). Denote
by By C indg,(t) the subset of functions supported on the ball of radius N around
the standard chamber. Denote by T a Hecke operator generating the spherical Hecke
algebra, normalized so that it is integral and @' T is not.

Then, following Breuil, showing that ind$, (7o) is an integral structure reduces to the

following statement.

Theorem 16. Let the assumptions be as in the previous theorem. For all large enough N € Z..
there exists a constant € € Zs, depending only on N,n,a such that for all k € Zs, and all
f € ind$,(t) we have

(T - El)(f) € By + (Dkindgz’fo - f € By + (Dk_eindngo,

Writing f = Y™, f,, with f,, supported on the sphere of radius N + m, one can show the
above by decreasing induction on m, using the explicit formula defining T.

The theorem and its proof are far from satisfying. There are many artificial restrictions
arising from this method of proof, since we rely on certain “miracles” such as divisibility
of binomial coefficients and invertibility of certain matrices. Moreover, the proof depends
(as in Breuil’s original proof for n < 2p) on a certain choice of representatives for xr in
Or, namely the Teichmiiller representatives. Except from being unnatural, it means that
generalization of this method to other reductive groups, where there is not always such
nice choice of representatives, is far from immediate. Indeed, the unipotent radical N
of the parabolic subgroup B is not as simple, and not always abelian. For example,
if G = GL3(F), then N is the Heisenberg group. Therefore, we might not always have
Teichmuiller representatives.

Moreover, it seems that there should be a more enlightening way of establishing this
result, since one may reduce the statement of the theorem to a statement about I(1)-
invariants of the reduction mod @, where I(1) is the pro-p Iwahori subgroup corre-
sponding to B, namely (1) = red ' (N(xf)) with red the reduction mod @. This follows
from the fact that we could restate it as the injectivity of a certain map between profi-

nite I(1)-modules, which is equivalent to injectivity on the I(1)-invariants. However,
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trying to establish the injectivity on the I(1)-invariants did not seem to be any easier, and
consequently is left out of the current work.

We hope that further study of the role of the I(1)-invariants in the reductions mod @* for
G = GLy(F) and, more generally, the role of I(1)-cohomology for groups of higher rank,
will lead to a more complete statement of the theorem in the future.

Invariant Norms for Us(F)

As many attempts were made in order to find criteria for the existence of integral
structures in representations of GL,(F), where F is a finite extension of Q,, towards
the proof of the Breuil-Schneider conjecture, which concerns the case of GL,(F), and
somewhat more generally, the case of split reductive groups, very little is known about
the correspondence for non-split reductive groups, in particular for the unitary group.
In chapter 4, we prove the existence of invariant norms in both smooth tamely ramified
principal series representations of Us(F) and in unramified locally algebraic principal
series representations of Us(F) of small weight. We do so by employing the methods
developed by Vigneras in [26] and by Grofie-Klonne in [15].

Let us state our result more precisely. Let E be a quadratic extension of F, and assume
that C contains also the normal closure of E. We also set for the rest of the introduction
@ = @ a uniformizer of E (and not of F!!) and g = g to be the cardinality of the residue
tield of E. Let V be a 3-dimensional vector space over E, and let x - x be the nontrivial
involution in Gal(E/F). Denote by 0 the Hermitian form on V represented by the matrix

— o O
oS = O
o O

with respect to the standard basis on V. Explicitly
(u,v) = D0u.

Let
G = Us(F) = Us(6) = {g € GLs(E) | 363 = 6}

Let B be its Borel subgroup of upper triangular matrices, and let M be the maximal
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(nonsplit) torus of diagonal matrices contained init. Let y : EX — C*and x; : U;(F) — C*
be smooth characters, where U;(F) = {x € E | x-X = 1} are the norm 1 elements. Then

one can consider y ® x; as a character of M, and inflate it to a character of B. We let
o = Ind5(x ® x1)

be the smooth principal series representation. Fix some a,b € Z, and some d € Z. Let t

be the irreducible algebraic representation of Us of highest weight
diag(z1,22,%; ") - 77, - det(g)’

with respect to B.

In chapter 4 we prove

Theorem 17. Assume that either

(i) x, x1 are unramified, and that a,b < p, or

(ii) x, x1 are tamely ramified, and that a = b = 0.
Then 1 admits an integral structure if and only if

@ < [x(@)] < |g 20|

We note that this result holds both when E/F is unramified, and when E/F is ramified.
Here, in contrast with chapter 2, the results are proved by two different methods. Case
(i) is proved by the method of Breuil, as in [4], while case (ii) is proved by the method
Vigneras uses in [26].

Although U;(F) is rank one, so the analysis on the Bruhat-Tits tree remains quite similar
to GLy(F), its Borel subgroup already has a nonabelian unipotent radical, which com-
plicates the computations. The existence of two conjugacy classes of maximal compact
subgroups, and the treatment of both ramified and unramified extensions E/F, which
yield different reductions, turned this generalization to be quite more involved than it

appears to be.

We comment that although some of the methods employed in this work could be gener-
alized to groups of higher rank, we wanted to focus on small rank, as there is still much

yet to understand already there.
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KIRILLOV MODELS AND THE BREUIL-SCHNEIDER
CONJECTURE FOR GL,(F)

ERAN ASSAF, DAVID KAZHDAN, AND EHUD DE SHALIT

ABSTRACT. Let F' be a local field of characteristic 0. The Breuil-Schneider
conjecture for GLo(F') predicts which locally algebraic representations of this
group admit an integral structure. We extend the methods of [K-dS12], which
treated smooth representations only, to prove the conjecture for some locally
algebraic representations as well.

1. INTRODUCTION

1.1. Background. Let F be a local field of characteristic 0 and residue character-
istic p, 7 a fixed uniformizer of F, and ¢ the cardinality of its residue field Op /7OF.
Let E be an algebraic closure of F'.

Let G be a reductive group over F and G = G(F'). A locally algebraic represen-
tation (p,V,) of G over E is a representation of the type

(11) p:fr@o’

where (7,V;) is (the E-points of) a finite dimensional rational representation of G,
and (o, V,) is a smooth representation of G over E. An integral structure Vp0 in V,
is an Og|G]-submodule which spans V), over E, but does not contain any E-line.

If 7 and o are irreducible then p is irreducible as well ([P01], Theorem 1). In
such a case, a non-zero Og[G]-submodule Vpo of V, is an integral structure if and
only if it is properly contained in V). Indeed, the union of all E-lines in Vpo, as well
as the subspace of V), spanned by Vp0 over E, are both E[G]-submodules of V,. If
0C Vp0 C V, (both inclusions being proper), the irreducibility of p implies that the
first is 0, and the second is V.

Two integral structures in V,, are commensurable if each of them is contained
in a scalar multiple of the other. In general, V, need not contain an integral
structure. When such an integral structure exists, it need not be unique, even up to
commensurability. However, if p is irreducible, and an integral structure does exist,
there is a unique commensurability class of minimal integral structures, namely the
class of any cyclic Og[G]-module. Thus, when p is irreducible, to test whether
integral structures exist at all, it is enough to check that for some 0 # v € V,
Og[G]v is not the whole of V,.

The existence (and classification) of integral structures in irreducible locally al-
gebraic representations is a natural and important question for the p-adic local
Langlands programme (see [Brl0]). When G = GL,, a precise conjecture for the
conditions on 7 and ¢ under which an integral structure should exist in p was
proposed by Breuil and Schneider in [Br-Sch07], and became known as the Breuil-
Schneider conjecture. The necessity of these conditions was proved there in some

1
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2 ERAN ASSAF, DAVID KAZHDAN, AND EHUD DE SHALIT

special cases, and by Hu [Hu09] in general. The sufficiency tends to be, in the
words of Vigneras [V], either “obvious” or “very hard”, even for GLs.

Quite generally, if G is an arbitrary reductive group, the simpler ¢ is algebraicly,
the harder the question becomes. An obvious necessary condition is for the central
character of p to be unitaryl. Assume therefore that this is the case. If o is
supercuspidal (its matrix coefficients are compactly supported modulo the center),
the existence of an integral structure is obvious. Using global methods and the trace
formula, existence of an integral structure can also be proved when o, realized over
C by means of some field embedding E < C, is essentially discrete series (its
matrix coefficients are square integrable modulo the center)?[So13]. In these cases,
no further restrictions are imposed on 7. At the other extreme stand principal
series representations, where one should impose severe restrictions on 7, and the
problem becomes very hard.

We warn the reader that for arithmetic applications, the minimal integral struc-
tures in an irreducible V, are often insufficient. In particular, they may be non-
admissible, in the sense that their reduction modulo the maximal ideal of O is
a non-admissible smooth representation over IF‘q. In such a case, even if minimal
integral structures are known to exist, the existence of larger admissible integral
structures is a mystery, which is resolved only in special cases, again by global
methods. See [Br04].

1.2. The main result. We now specialize to G = GLs. In this case the full
Breuil-Schneider conjecture is known when F' = Q,, but only by indirect methods
involving (¢, I")-modules and Galois representations. It comes as a by-product of
the proof of the p-adic local Langlands correspondence (pLLC'). This large-scale
project [B-B-C] depends so far crucially on the assumption F' = Q,,. It is therefore
desirable to have a direct local proof of the Breuil-Schneider conjecture, which does
not depend on pLLC, and which holds for arbitrary F. As mentioned above, if o is
either supercuspidal or special, there are no restrictions on 7 and integral structures
are known to exist. We therefore assume that ¢ = Ind(x1, x2) is an irreducible
principal series representation.

In this work we prove the Breuil-Schneider conjecture for GLy(F') in the following
cases: (1) The characters x1 and x»2 are unramified, 7 = det(.)”™ ® Sym™, and the
weight is low: n < ¢ (2) The x; are tamely ramified, and 7 = det(.)™. The second
case has been done in [K-dS12] already, but the proof presented here is somewhat
cleaner.

To formulate our theorem, let y; be smooth characters of F'* with values in E*,
and w the unramified character? for which w(7) = ¢~'. Let B be the Borel subgroup
of upper triangular matrices in G, and consider the principal series representation

(1.2) (Vo,0) = Ind%(x1, X2)-

LA character x : FX — EX is unitary if its values lic in O5.

2The notion of “essentially discrete series” should be invariant under Aut(C), hence indepen-
dent of the embedding of F in C. This is known for GL,, by the work of Bernstein-Zelevinski,
and for the classical groups by Tadic.

3This character is usually denoted |.| over C. We will have to consider |w(m)|, the absolute

value of ¢g~! as an element of E, and we found the notation ||r|| too confusing.
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This is the space of functions f : G — E for which (i)

(13) f((6 5, )9) =i

and (ii) there exists an open subgroup H C G, depending on f, such that f(gh) =
f(g) for all h € H. The group G acts by right translation:

(14) o(9)f(9) = g 9).

The central character of o is x1x2, and Ind%(x1, x2) =~ Ind%(wy2,w tx1), unless
this representation is reducible. In fact, o is reducible precisely when xi/wxs =
w*l. In this “special” case o is indecomposable of length 2, and its irreducible
constituents are a one-dimensional character and a twist of the Steinberg represen-
tation by a character. The Breuil-Schneider conjecture for a twist of Steinberg, and
any 7, is known (for GL2(F), see [T93] or [VO08]), however, as kindly pointed out
to us by one of the referees, the case where ¢ is an extension of the trivial represen-
tation by the Steinberg representation (in that order) is not considered there and
we are unaware of efforts made in that direction for an arbitrary 7 when F' # Q.
Nevertheless, we exclude this case from now on, and assume that o is irreducible.

Next, fix integers m and n > 0, and consider the rational representation

(1.5) (Vr,7) = det(.)™ ® Sym”,

where Sym”™ denotes the nth symmetric power of the standard representation of
G. Put
(1.6) A = xi(m), p=wxa(m),

A= M7, =™
The Breuil-Schneider conjecture for p = 7 ® o predicts that p has an integral
structure if and only if the following two conditions are satisfied:

(1.7) (i) Nagr"| =1 (DAl < g~ ", [l < g 7",
Condition (i) means that the central character of p is unitary. Given (i), (ii) is

equivalent to 1 < |5\| < |¢g7'7n~"| or to the symmetric condition for fi. It is known
(and easy to prove) that these two conditions are necessary.

Theorem 1.1. Assume that (i) and (ii) are satisfied. Assume, in addition, that
either (1) x1 and x2 are unramified and n < g, or (2) that x1 and x2 are tamely
ramified and n = 0. Then p has an integral structure.

Although our method is new, and gives some new insight into the minimal in-
tegral structure (see Theorem 1.2 below), the two cases have been known before:
case (1) by Breuil [Br03] (for Q,) and de Ieso [dI12] (for general F'), and case (2)
by Vigneras [V08]. It is interesting to note that the restriction n < ¢ in case (1)
and the restriction on tame ramification in case (2) are also needed in the above
mentioned works. In fact, Breuil, de Ieso and Vigneras all use, in one way or an-
other, the method of compact induction, replacing the representation p by a local
system on the tree of G. Our approach takes place in a certain dual space of func-
tions on F. Any attempt to translate it to the set-up of the tree involves the p-adic
Fourier transform, which is unbounded, and makes it impossible to trace back the
arguments. The way in which the weight and ramification restrictions are brought
to bear on the problem are also not similar, yet the very same restrictions turn out
to be necessary for the proofs to work.
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1.3. An outline of the proof. As in [K-dS12], our approach is based on a study
of the Kirillov model of p. For the sake of exposition we now exclude the case
X1 = w2, which requires special attention. Assuming x; # wxe, the Kirillov
model of p is then the following space of functions on F' — {0}:

(18) K= Ccoo(Fa T)Xl + CSO(F7 T)wXQ c COO(FX7T)'

Here C2°(F,T) is the space of V;-valued locally constant functions of compact
support on F. The model K is obtained by tensoring 7 with the classical Kirillov
model of the smooth representation o (see [Bu98]). It contains Ky = C°(F*, 1),
the subspace of functions vanishing near 0, and K /Ky consists of two copies of V.
When 7 = 1, this is just the Jacquet module of K. The characters y; and wys
are the exponents of the Jacquet module, the two characters by which the torus of
diagonal matrices acts on it.
We record the action of an element

(1.9 s=(0 7 )en

on ¢ € K. Fix an additive character ¥ : FF — E* under which Of is its own
annihilator for the pairing (8, z) — ¥(8z). Then

(1.10) p(g)d(x) = 7(g) (Y (br)p(ax)) .

The action of G in the model K depends on the choice of v, but only up to isomor-
phism.

At this point, we must introduce more notation and recall some easy facts. Let
Up = OF be the group of units in Op. Let 1g be the characteristic function of
S C F, and ¢y = Ly, (I € Z). If b € F, write p(x) = 9(bx). The function
PYy(7'2)¢1(x) depends only on 3, the image of bin W = F/Op, so from now on we
denote it by ¥(m~'x) ¢ (x). Any locally constant function on the annulus 7'Ur can
be expanded as a finite linear combination of these functions. Moreover, Fourier
analysis on the disk 7'@p implies that

(1.11) > CBs(r ) di(w) =0
Bew

if and only if C;() depends only on 70, i.e.

(1.12) C(B)=Ci(B)if -8 eW, =7 '0p/Op.
The same applies of course to V;-valued functions, except that now the coefficients
Cl(ﬂ) € V‘r-

An arbitrary function ¢ € K may be expanded annulus-by-annulus as

(1.13) p=> > CBs(r " z)i(),

I=ly BEW

where Ci() € V;, lgp € Z is the valuation of the outermost annulus on which ¢ is
supported, and for every [ only finitely many C;(3) # 0. The only restriction on ¢
is imposed by the asymptotics as x — 0. In particular, finite linear combinations
as above represent the elements of Ky. One should think of the g8 as frequencies,
and of the Cy(B) as the amplitudes attached to these frequencies on the annulus
7'Up. These amplitudes are not uniquely defined since we may add to C;(3) a
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perturbation C;(3) without affecting ¢|7'Ug, provided C;(3) = Cy(8") whenever
B — " € Wy. But as explained above, this is the only ambiguity.

Theorem 1.1 follows from the following more precise result, which makes the
integral structure on V), “visible”.

Theorem 1.2. Let the assumptions be as in Theorem 1.1. Let Vp0 be the Og|G]-
submodule of V,, = K spanned by a non-zero vector. Then there exist Og-lattices
My(B) C V, such that if ¢ € Vp0 vanishes outside Op, it has an expansion as above
with Co(B) € My(B) for every S.

Note that we do not claim that the values of ¢ € Vg’ are bounded on Ug, nor at
any other point. The amplitudes can be bounded only separately, and only on the
first annulus where ¢ does not vanish. Since the Cy(8) are not uniquely defined,
one still needs a simple argument to show that this is good enough.

Proposition 1.3. Theorem 1.2 implies Theorem 1.1.

Proof. We shall show that V) # V,, so in view of the irreducibility of p, V; will
be an integral structure. Consider the function ¢ = C'¢g where C € V. lies outside
M= Zﬁewl My (B). Suppose, by way of contradiction, that ¢ € Vpo. Then ¢ is also
given by an expansion as in Theorem 1.2. For x € Ur we must have then

(1.14) C=Y ColB)s(a).

pewW
This forces, as we have seen, the equality Cy(0) — C = Cy(B) for g € Wy — {0}.
But this contradicts the choice of C. (|

We now make some comments on the proof of Theorem 1.2. The first step is
standard. Using the decomposition G = BK, K = GLy(Or), we show that V? is
commensurable with a certain Og[B]-module of finite type A which also spans V,
over . We may therefore prove the assertion of the theorem for A instead of VPO.
Our A will be spanned over O by an explicit infinite set £ of nice functions.

Pick a ¢ € A, express it as a linear combination of the functions in &, and
expand it annulus-by-annulus as above. The coefficients C;(8) then satisfy recursive
relations, in which the coefficients used to express ¢ as a linear combination of £
figure out.

Suppose that ¢ vanishes off Op. It may still be the case that C;(8) # 0 for
some (3 and | < 0. However, cancellation must take place, and as we have seen,
Cy(B) depends then, for I < 0, on 7 only. We proceed by increasing induction on
! and show that Cj(3) must belong, for [ < 0, to a certain Og-lattice M;(8) C V,,
depending on [ and 8, but not on ¢. When [ = 0 we reach the desired conclusion.

Two phenomena assist us in establishing these bounds on the coefficients. The
first, which has already been utilized in our previous work [K-dS12], is that in the
recursive relations for Cj(3) we encounter terms such as

(1.15) > Cii(a).
Ta=/

As long as [ < 0, the ¢ summands are all equal, so their sum is equal to ¢C;_1(ag),

where g is any one of the o’s. The factor ¢ is small, and helps to control C;(8).
The second phenomenon is new, and more subtle. The information that C;(5)

depends only on 78, puts a further restriction on Cj(3), beyond lying in M;(3),
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which is vital for the deduction that the Cjy1(y) lie in Mj41(7y). For example,
assume that m = 0 and n = 1, so 7 is the standard representation of G on E2, and
let e; and ez be the standard basis. In this example, up to scaling,

(1.16) M;(B) = Spano, {ﬂ_lel,ez — W_lﬁel}

(note that this is indeed well defined, i.e. depends only on Smod Op). It is easily
checked that if Cy(8) € M,;(B) for all 8, and in addition, C;(S) depends only on 70,
then in fact

(1.17) Ci(B) € Spano, {71'7[61,71'(62 - 71'71661)} .

This minor improvement on C;(8) € M; is crucial for our method to work. Roughly

speaking, the first phenomenon described above takes care of the factor ¢~! in

condition (1.7)(ii), while the second one takes care of the 7=".

The inductive procedure requires also the relation M;(8) C My41(w/3). It is here
that we need the condition n < ¢. We may modify the definition of M;(5) to
guarantee this relation without any restriction on n, but we then lose the subtle
phenomenon to which we alluded in the previous paragraph. At present, we are
unable to hold the rope at both ends simultaneously.

When x; and ys are unramified this is the end of the story. When y; and
X2 are ramified, two types of complications occur. First, we must give up the
algebraic part 7 (except for the benign twist by the determinant). Second, in the
recursive relations used to define Cj(), Gauss sums intervene. These Gauss sums
have denominators which are still under control if the characters are only tamely
ramified, but if the y; are wildly ramified, our method breaks down. It is interesting
to note that the well-known estimates on Gauss sums intervene also in Vigneras’
proof of the tamely-ramified smooth case of the conjecture.

In the remaining cases, not covered by (1) or (2), it is possible that Theorem 1.2
fails, yet Theorem 1.1 continues to hold, for a different reason. It will be interesting
to check numerically whether one should expect Theorem 1.2 in general. Even for
F = Qp, where, as mentioned above, the full conjecture is known, it is unclear to
us whether Theorem 1.2 holds beyond cases (1) and (2).

2. PRELIMINARY RESULTS

2.1. Fourier analysis on Op. The discrete group W = F/Op is the topological
dual of OF via the pairing

(2.1) (8, 2) = vp(x) = p(Ba).

Every locally constant E-valued function on Of has a unique finite Fourier expan-
sion

(2.2) ¢=Y c(B)vs(x).
pEW
The proof of the following easy lemma is left to the reader.
Lemma 2.1. (i) ¢|Ur = 0 if and only if ¢(8) depends only on wf. (ii) p|mOp =0
if and only if 3 5 c(B) =0 for every v € W.

The lemma is immediately translated to a similar one in the disk 7'Op using
the functions 15(7~!z) as a basis for the expansion.
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2.2. Lattices in V.. If 5 € W and [ € Z let

(2.3) Dy(B) = {aeFHa—w‘lﬁ\ < \7r_1|}.
This disk indeed depends only on 8 mod Op. Note that
(24) Diai(v) = [] Du(B).

Th=y

Let 7 = det(.)™ ® Sym™. Identify V, with E[u]<", the space of polynomials of
degree at most n, with the action

(2.5) T << z Z )> u' = (ad — be)™(a + cu)" " (b + du)".
Let
(2.6) Ni(B) = {P € V;||P(a)| < ||~ Yo € Di(B)} .

These are lattices in V.

Lemma 2.2. (i) For any vy € W
(27) () Ni(B) = 7" Niga (7).

mB=y
(ii) Assume that n < q. Then

(2.8) Ni(B) = Spano,, {(x™")" " (u—77'8)" (0<i<n)}.
(iii) Assume that n < q. Then
(2.9) Ni(B) C Niga(mB).

Proof. (i) If P € N;(j3) then it is bounded by |r|~™ on D;(3). But the ¢ disks
Dy(B), for the f satisfying 78 = «, cover D;y1(7). The result follows.

(ii) Clearly P € Ny(B) if and only if 7" P(7~'u + 77!3) € Np(0). It is therefore
enough to prove that |P(a)| < 1 for all a € O if and only if P € Og[u]<™. This is
well-known, but note that it fails if n > ¢ (consider 7=!(u? — u)).

(iii) This is an immediate consequence of (ii).

O

2.3. Passing from Og[B]-modules to Og[G]-modules. Consider the represen-
tation V,, where p = 7 ® o, 7 = det(.)™ ® Sym™, and o = Ind$(x1, x2) are as in
the introduction.

Proposition 2.3. Letvy,...,v, € V, be such that the module A, = 22:1 Og[Blv;
spans V, over E. Let

n T

(2.10) A=>"> " 0g[B] (v ®v;) CV,.

i=0 j=1
Then A is commensurable with every cyclic Og[G]-submodule of V.

Proof. Let K = GL2(Op) and recall that G = BK. If N < K is a subgroup of
finite index fixing all the v;, then IV preserves the finitely generated Og-submodule

(2.11) > Op(' @v)),
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because 7(K) preserves Og[u]<". Tt follows that D Og[K](u' ® v;) is finitely
generated over Op. Since A spans V), over F, there is a constant ¢ € E such that

(2.12) > Og[K](u ®v;) C cA.
But then 7

Z Op[G)(u' ®@v;) = Og|B Z Op[K](u' ® v;)
(2.13) | C Op[BI(A) = cA.

On the other hand, A C >, ;Op [G](u’ ®v;). The two inclusions prove the proposi-
tion, since the sum of a finite number of cyclic modules, all being commensurable,
is again commensurable with any cyclic module.

O

Corollary 2.4. To prove Theorem 1.2 we may replace V,? by A.

2.4. The Kirillov model and a choice of A. Assume from now on that x; #
wx2. The exceptional case x1 = wyz requires special attention and will be dealt
with in the end. Let K be the model of V,, described in the introduction. For {v;}
we choose the two functions

(2.14) v = F(;(r) =lopx1, V2= F(;l = lo,wxe.
Let F,;(CE) = Fy(7 *z) and similarly F,;'(:r) = F, (7 *z). Since

ok ok , B )
(2.15) (77T F) = st
and similarly for Fy) (), we see that A, = Op|B]F, + Og|B]F, spans V, over E.
Lemma 2.5. Let A =%" Z?zl Og[B] (u' ® v;), where vy = Fy and vy = Fy .
Then every element of A can be written as a finite sum
(216) o= > clB)s(-m ") F(x) + cp (B)ds(—n"0)Fy (2),

k=ko BEW

where ¢,(8), ¢, (8) € n "Ny (B)., and ko € Z is the minimal k for which the
coefficients are monzero.

Proof. Since the central character of p is unitary (condition (1.7)(i)), it is enough
to span A by matrices in the mirabolic subgroup

e

Furthermore, as BN K stabilizes . 2521 Og (u' ®v;) , we see that

_ Tk —nkg i )
A - k%ﬁ;vow(( X )) (v ® )
= 3N A - ) ® s (—m ) (OEF,;(:E) + OEF,;’(x)) .
kEZ BEW

The coefficients (7=%)"~%(u — 77%B)" € Ni(B), see Lemma 2.2(ii).
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3. THE UNRAMIFIED CASE

3.1. The recursion relations. Assume now that y; and y» are unramified. Recall
that A = x1(7), p = wxa(7), and ¢; = 1uy,.. Then

(3.1) Z)\l Fo,  F (x Zﬂl oy

Pick a ¢ € A. Substituting (3.1) in the expression (2.16), and rearranging the
sum “by annuli” we get

(3.2) =33 CiB)s(-r"w)oi(@),
l=ko BEW
where
(3.3) Ci(B) = Ci(B)+C (B,
l
G = YA ST ),
k=ko ml=ka=p

Q
S

I
MN
t&

=
™
SO
D

k=ko ml=ka=p4
We deduce that
(3.4) Cre(B) = ¢, (B)
CiB) = XY Ciy(@) +a(B),
Ta=0

and similarly for CIH(B), with p instead of \. We now derive from these relations a
recursion relation for the Cy(3), going two generations backwards.

Lemma 3.1. Let ¢, = ¢; + ¢, . Then C,(8) = ¢k, (8) and

Cn(n) = (A+p) Y GB) —pr Y > Ciala)

77[3:7 77/3:’7 7"(1:[3
(3.5) = 3" (A (B) + ey (B) + e (7).

mB=y

Proof. We add the relations that we have obtained for C;(8) and C; (8) and rear-
range them. We do the same at level [ + 1. Letting o, § and v range over W as
usual, we get

GB) = A Ca(@+ =X Y Cli@)+ald),

Ta=0 Ta=4
(36)  Cra(y) = AD_CB) + =2 Y C(B) +ean).
mB=y mB=y
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To deal with the middle term in the second equation we use the recursive relation
for C; (B) and then eliminate (1 —A) >_,,_5 C;_;(a) using the first equation:

(=X Y C/(B) =2 (D @+ B

Ta= TB=y Ta=4

—_— ; Ci(B) — A ZﬁCH(a) —a(B)
+( = X) ﬁz ¢ (8)
- ; cl(ﬁ)_z pA ; ZBCH(a)
(3.7) - ;(M(ﬁ) +MCEE;))- 7

The lemma follows from this.
|

3.2. Conclusion of the proof. Let p satisfy the conditions of Theorem 1.2, i.e.
the estimates (1.7)(i) and (ii) on A and g, and n < g. Pick a ¢ € A as before, and
expand it as in (3.2). Assume that it vanishes outside of Op. Let

(3.8) My(B) = ¢ ta "I N(B).
Lemma 3.2. For every ko <1 <0 and every 8 € W, Ci(8) € M;(B).
Proof. We apply Lemma 2.2 and Lemma 2.5, and prove the desired bound on C;(5)
by increasing induction on .

When [ = kg, Ci,(8) = ci(8) € 7 F™ Ny (8) C My, (3). Suppose that the
lemma has been established up to index I, and {+1 < 0. Then C;(8) (resp. Cj—1(«))

depends only on w3(resp. ma), since ¢ vanishes on F'—Op. We invoke the recursion
relation (3.5) for Ci11(7). The term

(3.9) > (A (B) + ey (B)) € Mija(v)
TB=y

since 02(6)702/@) € I NY(B), |ul, |A| < |g~ 7w~ ™|, and because of the relation
Ni(B) C Nit1(7), that holds whenever 78 = «y. That

(3.10) a+1(v) € Mia(v)

is clear. The term

(3.11) A+ Y Ci(B) € Mia(v)
TB="

because the ¢ summands C;(8) are equal, hence belong to

(312) ﬂ Ml(ﬂ) — qflﬂ_fnflm ﬂ Nl(ﬁ) _ qil’iTilleJrl('Y)-
TB=y mh=y
Thus >, 5_, Ci(B) € TN 1 (y), while |A + p| < |[¢7 7~ "™|. Finally,
(3.13) HA Z Z Cr-1(a) € Mya(v)
mp=y Ta=pB
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for similar reasons: For a given (3, the ¢ summands C;_;(a) are equal, so belong to
(314) () Mia(@) =g a0 () Nig(a) = ¢t CUN().
Ta=/4 Ta=p4
This implies that their sum, 3 _5Ci_1(a) € 7= =D N (B) € o= DTN ().
But |p)| = |¢g7tm~"=2™| so for every 3
(3.15) pA Y Croa(a) € ¢ ta UM (1) = My (7).
Ta=p

Since each of the four terms in (3.6) has been shown to lie in M1 (7), the proof
of the induction step is complete.
O

When | =0, Cy(5) € My(p), and this proves Theorem 1.2.

4. THE CASE X1 = wXa2

We finally deal with the one excluded case, when y; = wy2. After a twist by a
character of finite order we may assume that y; is unramified. In this case A = u
and the Kirillov model is the space
(4.1) K =CX(F,1)x1+ CX(F,T)vxa,

where v : F* — Z C E is the normalized valuation. The action of B is still given
by (1.10). Once more, K contains Ky = C°(F*, 1) as a subspace. When 7 = 1,
the quotient K /Ky is the Jacquet module. The torus acts on it non-semisimply, by

(4.2) ( t " ) '—>X1(t1t2)< 1 i’(fl/tz) )

Following the notation of Section 3, we let

(4.3) F(; =x1log, F(;/ = —vx1lo,

and
o0 o0

(4.4) Fe=Y N, F => (k—DX g
1=k 1=k

The module A consists of all the functions ¢ as in (2.16), and any such ¢ can be
expanded “by annuli” as in (3.2). The coefficients of the expansion are given by
(3.3), except that the last equation now takes the shape

l

(4.5) CB)y =D (k=N 3 el(a)

k=ko wl—ka=p
The recursion relation for C; () is given by (3.4) but C} () needs a modification.
Lemma 4.1. We have C,:O(B) =0, C’,;/OH(B) =2 ra=p c}éo(a), and for 1 > ko

(4.6) Cla =23/ -23 3 ¢ h@-2> .

mB=v nB=r ma=P =y

Proof. A straightforward exercise.
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Lemma 4.2. The following recursion relation holds:
(4.7)

Crr1(y) =2A Z Ci(B) — \? Z Z Ci—1(a) = A Z Cz +Cl ))+CE+1(’Y)~

nB=v nB=y ma=4 mB=v

Proof. We write

Cri(n) = A ClB) + ey (7)

mB=y
= 2> @-2> (2 a@+a®) ]+
mB=y TB=y Ta=0
(438) = 20 GB) - D Cal@ =AY alB) +ean()
Th=~ A=y Tra=p3 TB=y

and we add the result to the recursive relation for Cl/i,_l('y).
g

Note the similarity with Lemma 3.1. The rest of the proof of Theorem 1.2 is
now identical to that given in the case A # p in Section 3.2.

5. THE TAMELY RAMIFIED CASE

For the sake of completeness we treat also case (2) of the theorem, which is
covered by [K-dS12]. The proof is the same, except that we have cleaned up the
computations.

5.1. The recursion relations. Assume from now on that at least one of the
characters x1 and x» is ramified, but 7 = det(.)™, i.e. » = 0. Since a twist of p
by a character of finite order does not affect the validity of Theorem 1.2, we may
assume that ys is unramified. We let € be the restriction of y; to Ug, and extend
it to a character of F* so that e(m) = 1. We denote by v > 1 the conductor of e.
Letting A = x1(7) and g = wya(7) as before, we have

(5.1) x1(ur®) = e(u)A*, wya (ur®) = p*
ifueUpg.
Recall that
(5.2) Fp=eY MNhg, B =3l
I=k 1=k

The module A consists this time of functions of the form

(5:3) ¢(x) = > > calBvs(—m " e)F(w) + o, (B)s(—n Fa) Fy ()

k=ko BEW

SN a@ns(-n ) en(x),

I=ko BEW
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with ¢, (8), ¢, (8) € 7~"*Op, and some Cy(B) which we are now going to compute.
Let, as before

B = Y NN gl

k=ko wl=ka=p
l

(5.4 @ = Y at Y )
k=ko wl-ka=p

These coefficients satisfy the recursion relations

(5.5) Cro(B) = ()
CilB) = XD Ci(@)+a(P)
Ta=f

and similarly for C, (), with p instead of . In terms of the C;(8) and the C; ()
we have

(5.6)
d(x) =c(z) Y D" ClBs(—n"w)pu(x) + Z > B (—m ) i),
l=ko BEW l=ko BEW

Invoking the Fourier expansion of e(z)¢;(x) (see [K-dS12], Corollary 2.2) we
finally get the formula

(5.7) Ci(B) = Yo e WG (B -7 u) + Y (B).

ueUFr /UY,

Here UY denotes the group of units which are congruent to 1 modulo 7, and 7(¢~1)
is the Gauss sum

(5.8) e )= Y v u)e(u).
u€Ur /UY,

We recall the well-known identity
(5.9) 7(e)r(e™!) = e(=1)¢".

5.2. Operators on functions on W. As in [K-dS12], Section 3.4, we introduce
some operators on the space C of E-valued functions on W with finite support. If
f € C we define

e The suspension of f

(5.10) SfB) = > fla

Ta=f

e The convolution of f with a character £ of Up, of conductor v > 1

(5.11) Bef®) =" S e u)p(s - n ),

17
q ueUF /UY.
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e The operator II

(5.12) ILf(B) = f(7p).
We decompose C as a direct sum C = Co @ C1, where

{fIVB, S fB+t) = 0}

wt=0

Ci1 = {f|f(B)depends only on 73} .

Lemma 5.1. (i) The projection onto Cy is

(5.13) Co

1
(5.14) P, = -1IS.

q
(ii) Let & be any non-trivial character. Then the projection onto Cy is
(5.15) Py=E¢E; 1 = Eg1 Ee.

1) If € is non-trivial then SE =0 and E¢Fe-1 Ee = Ek.
i3 [Sat3 3 3

Proof. All the statements are elementary, and best understood if we associate to f
its Fourier transform

(5.16) fl@)=">" f(B)s()
BeW

(x € Op) and apply Lemma 2.1. See [K-dS12], Section 3.4.
O

For f,q1,...,9- € C we write f = O(g1,...,¢r) to mean that in the sup norm
A1 < max [|gi .

5.3. Conclusion of the proof in the tamely ramified case. We assume from
now on that v = 1, i.e. ¢ is tamely ramified. The Breuil-Schneider estimates on A
and p are

[ I PYN 7 ]
Ml = g7

Fix a ¢ € A as in (5.3), so that
(5.17) Co € = O(x ™),

and assume that it vanishes off Op. We shall prove by increasing induction on {
that for [ <0

5.18 C,, O =0(qg ta=mh.
( ) IR l (q

When we reach [ = 0 this will imply Theorem 1.2, even uniformly in 3, thanks to
the fact that the algebraic part of p is essentially trivial.

Using the notation of the last sub-section, we can write the recursion relations
(5.5) as

—2m|.

’ " "

Cko = Crys Cku:Clco
(5.19) C, = ASC,_,+q
C = pSCi+q.
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Besides C;() we introduce Cy() so that the following formulae hold
(5.20) C = EC+Cf
C’l = EEACl” + Cl/

Here the first formula is just (5.7). The second shows that the amplitudes C;(3)
are analogously associated with the function ¢(z) = e71(x)¢(x).

Next, we observe that since SE. = SE.-1 = 0, we can rewrite the recursion
relations as

Cl/ = )\Sél_1 + C;

(5.21) C, = uSCi_i+¢ .
For [ < 0 the functi~ons C;_1 and C’l,l belong to the subspace that we have called
C1, because ¢ and ¢ vanish on w!~1Ug. This implies the following result.

Lemma 5.2. Forl <0,
C, = O0MCi1,¢)

(5.22) ¢/ = OuqCi1,c)).

We can now proceed with the induction. When | = kg (5.17) clearly implies
(5.18). Assume that I < 0 and that (5.18) has been established up to index [ —1. As
Ci_y = O(g~'n~™=2), and as €], = O(g™ 7~ "-2) = O(g~2r( ) m(1-2),
we obtain from (5.20) and the fact that v = 1 the estimate

(5.23) Ci_g = O(q" 2r(e )~ m(=2)),
By the lemma, this gives
(524) Oy =O0(ug  r(e™)r D 6L y) = Ofug~ (e 0=)

(the last equality coming from |ug=t7(e71)] > |[7~™|). A second application of
(5.20), the identity (5.9), and the induction hypothesis for C;_, (recall |u| > |[7=™])
yield

(5.25) Ci_1 = O(pg~ta—mU=2)),
A second application of the lemma finally gives
C, = O0ur ™2 ¢
(5.26) = O(g '™, ¢y = 0(g 'amh).

Symmetrically, we get the same estimate on C’l”. This completes the proof of (5.18)
at level [, and with it, the proof of Theorem 1.2.
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Existence of Invariant Norms in p-adic Representations
of GLy(F) of Large Weights

Eran Assaf

Abstract

In [4] Breuil and Schneider formulated a conjecture on the equivalence of the ex-
istence of invariant norms on certain p-adically locally algebraic representations
of GL,(F) and the existence of certain de-Rham representations of Gal(F/F),
where F is a finite extension of Q,. In [3, 9] Breuil and de Ieso proved that
in the case n = 2 and under some restrictions, the existence of certain admis-
sible filtrations on the ¢-module associated to the two-dimensional de-Rham
representation of Gal(F/F) implies the existence of invariant norms on the
corresponding locally algebraic representation of GLy(F). In [3, 9], there is
a significant restriction on the weight - it must be small enough. In [5] the
conjecture is proved in greater generality, but the weights are still restricted to
the extended Fontaine-Laffaille range. In this paper we prove that in the case
n = 2, even with larger weights, under some restrictions, the existence of certain
admissible filtrations implies the existence of invariant norms.

1. Introduction, Notation and Main Results

1.1. Introduction

Let p be a prime number. Let F' be a finite extension of @, and let C' be a
finite extension of QQ, which is “large enough” in a precise way to be defined
in Section 2. This paper lies in the framework of the p-adic local Langlands
programme, whose goal is to associate to certain n-dimensional continuous p
-adic representations of Gal(F/F), certain representations of G = G L, (F).

If F = Qp and n = 2, then this is essentially well understood - one has
a correspondence V' — II(V) ([6],[13],[8]) associating to a 2-dimensional C-
representation V' of Gal(@p /Q,), a unitary admissible representation of GL2(Q)).
This correspondence is compatible with the classical local Langlands correspon-
dence and with completed étale cohomology (]10]).

Other cases seem somewhat more delicate. In particular, Breuil and Schneider
have formulated in [4] a conjecture, generalizing a previous conjecture of Schnei-
der and Teitelbaum [16], which reveals a deep connection between the category
of n-dimensional continuous de-Rham representations of Gal(F'/F), and certain
locally algebraic representations of GL,,(F').

Preprint submitted to Elsevier April 14, 2017
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By the theory of Colmez and Fontaine ([7]), one knows that a de-Rham represen-
tation of Gal(F/F), V, is equivalent to a vector space, D = Dgr(V), equipped
with an action of the Weil-Deligne group of F' and a filtration, such that the
filtration and the action satisfy a certain relation called weak admissibility. To
this object, called the filtered (¢, N)-module attached to V', one can associate
a smooth representation m of GL,(F) by a slight modification of the classical
local Langlands correspondence ([4], p. 16-17). On the other hand, the Hodge-
Tate weights of the filtration give rise to an irreducible algebraic representation
of GL, (F), which we denote by p. The Breuil-Schneider conjecture essentially
says that the existence of a weakly admissible filtration on D must be equivalent
to the existence of a GL,, (F)-invariant norm on the locally algebraic represen-
tation p ® m. We mention that partial results, in this generality, have been
obtained by Hu ([12]), who proved that the existence of an invariant norm on
p®m implies the existence of a weakly admissinble filtration on D, and Sorensen
([18]), who proved the equivalence when 7 is essentially discrete series.

In this paper we consider the particular case where n = 2, and the representation
of the Galois group is crystalline.

Let D be a ¢-module of rank 2 over F'®q, C, equipped with a weakly admissible
filtration. Imposing some additional technical restrictions on the weights of
the filtration and on the smooth part, we show in this paper that the locally
algebraic representation II(D) associated to D according to the above process
admits a G-invariant norm. The methods we employ in order to prove this
result are well-known and were previously employed by Breuil ([3]) and de Ieso
([9]). The novelty of this paper is the extension of these methods to larger
weights, even though this is accompanied by a substantial restriction on the
smooth representation, 7.

We remark that in [5], the authors have proved many cases of the conjecture
formulated by Breuil and Schneider, using global methods. However, the results
we obtain in this paper are not included in their work, as they restrict the weights
to be in the extended Fontaine-Laffaille range, which, for n = 2, means that the
weight is small.

1.2. Notation

Let p be a prime number. Fix an algebraic closure @p of Qp, and a finite
extension F' of @, contained in @p. Denote by Op the ring of integers of F,
by pr its maximal ideal, and by kr = Op/pF its residue field. We also fix a
uniformizer w = wp € pp.

Denote by C a finite extension of Q) satisfying |S| = [F' : Q,], where S :=
Homyg4(F, C), and containing a square root of o(w) for every o € S.

Denote by O¢ the ring of integers of C, by p¢e its maximal ideal, and by k¢ =
Oc¢/pc its residue field. We also fix a uniformizer w = we € pe.

We denote f = [kp : Fp], ¢ = p/ the size of the residue field, and by e we denote
the ramification index of F' over Q, so that [F': Q] = ef and krp ~ F,. We
denote by F = Frac(W (kp)) the maximal unramified subfield of F', and by g
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the absolute Frobenius of degree p in Gal(Fy/Q,). We denote by Gal(F/F) the
Galois group of F and by W (F/F) its Weil group. Class field theory gives rise
to a homomorphism rec : W (F/F)% — F* (Artin reciprocity map) which we
normalize by sending the coset of the arithmetic Frobenius to w_IO;i.

Denote by v = v the p-adic valuation on @p normalized by vp(w) = 1. If
r € F, welet |x| = ¢7#(®). If A € kp, we denote by [\] the Teichmiiller
representative of A in Op. If u € C*, we denote by nr(p) : F* — C* the
unramified character sending w to p.

Denote by G the algebraic group GLy defined over Op, and let G = G(F) be
its F-points.

Let B be the Borel subgroup of G consisting of upper triangular matrices, and
let B = B(F) be its F-points.

Let N be the unipotent radical of B, and let N = N(F) be its F-points.

Let K be the group GL2(Op), which is, up to conjugation, the unique maximal
compact subgroup of G. Let I be the Iwahori subgroup of K corresponding to
B, and let I(1) be its pro-p-Iwahori.

Recall that the reduction mod pp induces a surjective homomorphism
red : K — G(kp)

and that I = red™ ! (B(kp)) and I(1) = red *(N(xkp)).
We denote by Z ~ F'* the center of G, and denote

(10 (01 G—aw (01
““ o w) ““\10) P2 % o0)
If A € Op, we denote
(0 1
wy = 1 _)\ .

Ifn=(no)res,m = (My)oes are elements of ng we write:
Z) ' — oS no_'

i) |nf =3 pes no

(

(

(i) n —m = (ny — My )pes
(w)n<mifn, <m, foralloc e S

0 (3) =t

(vi) If z € Op, we write 22 = [[ cg0(2)".

1.8. Main Results
We fix (A, \2) € C* x C* such that M\, ' ¢ {¢?, 1} and k € 75, Denote

*={0e€8|k, A0} CS
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We also fix some ¢ € S, and partition ST according to the action of o € ST on
the residue field. More precisely, for each | € {0,..., f — 1}, denote

Ji={oeST|a([() =rop(lC) ¥C€rr}

For example, if F' is unramified, then |J;| <1 for all [.

If i € Z, we denote by i the unique representative of i mod f in {0,..., f —1}.
For o € J;, we denote

Ve =inf{i |1 <i<f, Jgz#0}
that is, the smallest power of Frobenius g that is needed to pass from J; to
another, nonempty Jj.
We denote by x : GLy(F) — F* the character defined by

a b —vp(ad—bc)
(¢5)n=

For k € Z>p, we denote by pj the irreducible algebraic representation of G
of highest weight diag(z,x2) — x5 with respect to B, the Borel subgroup of
upper triangular matrices.

We regard it also as a representation of G = G(F'), and for any o € S, denote
by pf the base change of pj to a representation of G ®p, C.

Also, for any o € S, we fix a square root of o(w) and write PR =P ®c (on)%.

For k € Z5,,, we write
=i, = Q0
o€eS oces

Let T be the standard maximal torus of B consisting of diagonal matrices, and
let T =T(F).

Definition 1.1. Let § : T — C* be a C-character of T inflated to B, via
T ~ B/N. The smooth principal series representation corresponding to 6 is

mag(o) = {756~ | 2ot SO 2 A0

with the group G acting by right translations, namely (gf)(z) = f(zg) for all
7,9 € G and f € Ind%(0) .

Finally, we denote by
7= IndG(nr(A\7") @ nr(A; 1))

the smooth unramified parabolic induction.

Note that the hypothesis on (A1, A2) assures us that 7 is irreducible.
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We shall from now on consider the irreducible locally algebraic representations
of the form P, @

Note that pj is not the most general irreducible algebraic representation of G,
as it can be twisted by a power of the determinant.

However, for the purpose of existence of G-invariant norms, a twist by a power
of the determinant is equivalent to a twist by a power of y, which can be then
absorbed by 7 into the values of A1, As.

The Breuil-Schneider conjecture can be reformulated as follows (see [9])

Conjecture 1.2. The following two statements are equivalent:

(1) The representation py @ ™ admits a G-invariant norm, i.e. a p-adic norm
such that ||gv|| = ||v|| for allg € G and v € pp @ 7.

(i) The following inequalities are satisfied:

o vr(A\{!) +op(A;) + [k =0
o vp(A\y") + [k >0
o vp(gAy ') + k[ >0

The implication (i) = (i7) of Conjecture 1.2 follows from the work of Hu, which
shows it in full generality (for GL, (F)) in [12], using a result of Emerton ([11],
Lemma 1.6).

It remains to show (i) = (i).

The case A1 € OF (resp. gAg € OF) is treated in [9, Prop. 4.10] hence we may
assume that A\, g\a ¢ OF.

In [3, 9] Breuil and de Ieso represent P, ®™ as a quotient of a compact induction.

We briefly recall the definition of locally algebraic compact induction.

Definition 1.3. Let G be a topological group, and let H be a closed subgroup.
Let R be either O¢ or C. Let (7, V) be an R-linear representation of H over
a free R-module of finite rank V. We denote by indGm or by ind$V the lo-
cally algebraic compact induction of (7,V) from H to G. The space of the
representation is

G _ [ f(hg) =m(h)f(g) VheH
indgm = {f GV f has compact support mod H, f is locally algebraic

and G acts on ind%m by right translation, i.e. (gf)(z) = f(xg) for all g,z € G.
Then G
deZBE

Qe ————— =11,
Py (T — a)indf(zgk k

where a = A1 +q\2 € po , BZ is an O¢-lattice in Py ind%z denotes the compact

induction, and T is the usual Hecke operator [1].
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We then have a natural map
mdgzﬁz

(T — a)(ind% ;1)

0: — Hﬁ,a

whose image is denoted by O q.
This is a sub-O¢[K]-module of finite type which generates p, ® m over C.
Proving Conjecture 1.2 is then equivalent to proving that Oy , is separated, i.e.

does not contain a C-line (see [11, Prop. 1.17]) . In this paper, we prove that
this is the case, for some additional values of k and a.

This generalizes the previous works of Breuil and de Ieso in [3, 9], using similar
methods.

In fact, de Ieso proves the following theorem:

Theorem 1.4. We follow the preceding notations. The morphism 6 is injective
if and only if the following two conditions are satisfied:
(i) Foralll € {0,....f =1}, |J]<1.

(i1) For all o € J
ke +1 < p®.

As a corollary, it follows that under these conditions Oy, is separated.

In this paper, we prove that even in some cases where # is not injective, the
lattice O, is still separated. Namely, we prove the following theorem:

Theorem 1.5. We follow the preceding notations. Assume that |ST| = 1,
denote by o the unique element in ST, and letk =k, =d-q+r, with0 <r < q.
Assume that one of the following three conditions is satisfied:

(i) k < 3¢* withr < ¢ —d and vp(a) € [0,1].

(ii) k < 2¢* with 2vp(a) —1 <1 < q—d and vr(a) € [1,¢€].

(i) kgmin(pw]fl,%qQ) ,d—1<r and vp(a) > d.

Then O, is separated.

Therefore, these conditions on k, a ensure the existence of a G-invariant norm
on p, ®m, establishing new cases of Conjecture 1.2.

Example 1.6. Here are a couple of explicit examples for the established new
cases:

1. Let p # 2, k = 1(¢> — 1) and vp(a) € [0, min(e, “EL)]. Then, as k =

(g —1)g+ (g — 1), we see that d = r = (¢ — 1), hence

1 1
mwm)—1§2~2}f—

1
1==(qg—1) = —d==(q+1
fq )=r<gq 2@+)

so either (7) or (i7) in Theorem 1.5 is satisfied, showing that the lattice
Oy,q is separated in this case.
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2. Let g =p #2, k=1(»?—1) and vp(a) > 3(p — 1). As in the previous

example, d =7 = +(p — 1), hence d — 1 < r, and vp(a) > d. This shows

that condition (4i7) in Theorem 1.5 is satisfied, showing that the lattice
Oy,q is separated in this case.

2. Preliminaries

2.1. The Bruhat-Tits Tree
We refer to [2] and [17] for further details concerning the construction and
properties of the Bruhat-Tits tree of G.

Let 7 be the Bruhat-Tits tree of G: its vertices are in equivariant bijection with
the left cosets G/KZ.

The tree 7 is equipped with a combinatorial distance, and G acts on it by
isometries.

We denote by sg the standard vertex, corresponding to the trivial class K Z.

Equivalently, as the vertices are in equivariant bijection with homothety classes
of lattices in F2, sq corresponds to the homothety class of the lattice O @ Op.

For n > 0, we call the collection of vertices in T at distance n from the standard
vertex sg, the circle of radius n.

Recall that we have the Cartan decomposition
G=]][KZa"KZ = (]_[ ]Za‘"KZ) 11 (H IZBa‘"KZ) GY
neN neN neN

In particular, for any n € N, the classes of KZa "KZ/KZ correspond to
vertices s; of T such that d(s;, sp) = n. Denote Iy = {0}, and for any n € N5

I, = {[po] + @wlpa] + ... + @ Mun—1) | (o, .-, ttn—1) € K} C Op

is a set of representatives for Op /w"Op.

For n € N and p € I,,, we denote :

o _ [ @ n o _ (1 0
gn,u_( 0 1)a gnu_<wll, wnJrl)'

We note that 98’0 is the identity matrix, gé’o = o and that, for all n € N and
any u € I, , we have g}w = ﬁgg’uw. Then, g?w and g,lw define a system of
representatives for G/ K Z:

G = I #5211\ II 9o.52]- (2)

neN,uel, neN,uel,
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For n € N we denote

SV =120 "KZ =[] K2 Si=12pa"KZ=[] g\ .K2
nel, HEI,

and we let S, = SO[[S} and B, = BY][ B}, where B =[], -, 59 and
Bi =Iln<n S7ln'

In particufar, we have Sp = KZ [[aKZ.

Remark 2.1. Recall, as in [2, 9] that SO [[SL_; (vesp. BY]]BL_;) is the col-

n—1
lection of vertices in T at distance n (resp. at most n) from sg. Similarly,
SLTTSY _, (resp. BLIIBY_,) is the collection of vertices in 7 at distance n

n—1
(resp. at most n) from asg.

We denote by R either the field C' or its ring of integers O¢. Let o be a
continuous R-linear representation of KZ on a free R-module of finite rank
V,. We denote by ind% ;o the R-module of functions f : G — V,, compactly
supported modulo Z, such that

f(kg) =a(k)f(g) VeeKZ,gelG

with G acting by right translations, i.e. (g- f)(¢') = f(¢'9).

Asin [1], for g € G, v € V,;, we denote by [g, v] the element of indgza supported
on KZg~! and such that [g,v](g™!) = v.

Then we have

Vg,g € Giv eV, glg,v]=lgd,v], YVgeG reKZveV, [grv]=]g,0(k)v]

We can think of ind$ ;0 as a vertex coefficient system on 7, having o as the
module on each vertex, identifying [g, v] with the vector v at the vertex corre-
sponding to g, i.e. identifying vertex g with KZ¢g~!. Note that the choice of
representative for g K Z affects the choice of vector v € o.

Recall the following result ([1, §2]), which gives a basis for the R[G]-module
ind% ,o.

Proposition 2.2. Let B be a basis for V, over R, and let G be a system of
representatives for left cosets of G/KZ. Then the family of functions T :=
{lg,v] | g € G,v € B} forms a basis for ind$ ,0 over R.

Remark 2.3. The representation ind%. ,o is isomorphic to the representation of
G given by the R[G]-module R[G] ®gxz) Vo. More precisely, if g € G and
v € V,, , then the element g ® v corresponds to the function [g, v].

From proposition 2.2 and the decomposition (2), any function f € ind?( 70 can
be written uniquely as a finite sum of the form

F=33" (90,000, + (980 00,)

n=0 pel,

52



with v)) ,, v}, € V5, and where ng is a non-negative integer, which depends on

f. We call the support of f the collection of giw such that vfw # 0. We write
f €8, (resp. B,,SY, etc. ) if the support of f is contained in S,, (resp. By, SY,
etc. ). We write f € B? if the support of f is contained in BY for some n, and
f € B if the support of f is contained in B} for some n.

Let 7 be a continuous R-linear representation of G over an R-module. From [1],
we have a canonical isomorphism of R-modules

Hompg (ind%za,w) ~ Hompkz)(0,T |k z7)

which translates to the fact that the functor of compact induction ind% , is left
adjoint to the restriction functor, and is called compact Frobenius reciprocity.

2.2. Hecke Algebras

Let o be a continuous R-linear representation of K Z over a free R-module V,
of finite rank. The Hecke algebra H(K Z, o) associated to KZ and o is the
R-algebra defined by

H(KZ,0) = Endgg)(ind% o).

We can interpret H(K Z, o) as a convolution algebra. In fact, denote by Hxz (o)
the R-module of functions ¢ : G — Endg(V,) compactly supported modulo Z,
such that

Vi1, k2 € KZ, Vg€ G, @(kigra) = o(k1)op(g)oo(kz).

This is a unitary R-algebra with the convolution product defined, for all ¢1, o €
Hiz(o) and all g € G, by the following formula:

1% pa(g) = Z p1(x) 0 pa(z™lg).

tKZeG/KZ
It admits as a unit element the function ¢, = [1,4d] defined by

pelg) = {g(g) ‘Z;KZ :

One may verify that the bilinear map

Hiz(0) x ind% 0 —  ind$ 0

(0. f) = TPl =D e (flz"9)

tKZeG/KZ

equips ind% ,o with the structure of a left Hx z(o)-module, which commutes
with the action of G.

The following Lemma is well known, see e.g. |9, Lemma 2.4].
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Lemma 2.4. The map

Hiz(0) — H(KZ, o)
P = T@(f)

is an isomorphism of R-algebras. In particular, if g € G, and if v € V,, the
action of T, on [g,v] is given by

To(lgo) = Y oo )()L. (3)

tKZEG/KZ

We assume now that R = C'. Denote by 1 the trivial representation of K Z and
assume that o is the restriction to KZ of a locally analytic representation (in
the sense of [15, 14]) of G on V,. By [16], the map

o : Hrxz(1) — Hgz(o)
¢ = (p-0)(9):=¢(g)olg)
is then an injective homomorphism of C-algebras. Before we state a condition

assuring the bijectivity of ¢, we recall the existence of a @,-linear action of the
Lie algebra g of G on the space V, defined by

d
Vieg,VveV,, w= —texp(t;)v lt=0

where exp : g --+ G denotes the exponential map defined locally in the neigh-
bourhood of 0 ([[14, §2]).

This action is extended to an action of the Lie algebra g ®q, C, and allows de
Teso to obtain the following result: (see [9, Lemma 4.2.5])

Lemma 2.5. If the g ®q, C-module Vy is absolutely irreducible, then the map
Lo 18 bijective.

3. Representations of GLy(F)

3.1. Qp-algebraic representations of GLo(F')

For k£ € N, we denote by pi the irreducible algebraic representation of G of
highest weight diag(z1,x2) + % with respect to B, and we consider it also as
a representation of G = G(F).

For o € S, we denote by p7 the base change of py, to a representation of GRp ,C.
We denote by x : GLa(F) — F* the character defined by

a b —vr(ad—bc)
() ormrvess
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Also, choose a square root of o(7) in C, and let

Py =pp ®c (0ox)2.

vl

For ¢ € S and k € N, we identify p, with the representation of G given by the

C-vector space
k

Pty

i=0
of homogeneous polynomials of degree k in z,,y, with coefficients in C, on
which G acts by the following formula:

a b k—i, i a b : k—i i
© OV @by = (oox (P 0) @ty o Basto(dys)
(4)
If w, € BZ and if g € G, we denote simply gw, for the vector obtained from
letting g act on w,-.

Remark 3.1. The formula (4) assures, in particular, that for every w, € Jut

w 0 w. —w
0 w o ag-

Fix k = (ky)oes € N, and let

Ii={i=(is)oes €N, 0<i, <k, YoeS}.

We denote by pj (resp. Py ) the representation of G on the following vector

space
Vi i= ®p‘,§cr (resp. VB& = ®pzﬂ>

oceS ceSs

b
d

on which an element ( UCL > € G acts componentwise. In particular, for all

Rpes Wo € VB& we have:

n(t0)(®)-® (¢ 5)),

These are two absolutely irreducible representations of G which remain abso-
lutely irreducible even when we restrict them to the action of an open subgroup
of G ([4, §2]).

For all 7 € I}, we let:

eni = Q) er, i,

oeS
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where, for any o € S, ey, ;, denotes the monomial 2% =% yis. We then denote
by Uj the endomorphism of Vpk defined by

Uy == Q) UE,
o€S

where U7 denotes, for all 0 € S and k € N, the endomorphism of py given, with

respect to the basis (ek,i)fzo by the diagonal matrix

o(w)k 0 - 0
k—1
g = 0 o(w)
: . -0
0 0 1

In |9, Lemma 3.2|, de Ieso proves the following Lemma.

Lemma 3.2. There ezists a unique function ¢ : G — Endc(VBk) supported in
KZa 'KZ such that: -

(i) For any k1, k2 € KZ we have Y(k1a™ ka) = p, (k1) o ¥(a™) o p, (K2).

(1) Y(a™!) = Ug.

We remark that in fact, ¢ = Py |k Za—1K 7, Since

U, = Bﬁ(ofl) (5)

By Lemma 2.4, we know that the Hecke algebra H(KZ, Bk) is naturally iso-
morphic to the convolution algebra Hyz(p, ) of functions ©:G— Endc (V) )
compactly supported modulo Z, such that B

Vi1, k2 € KZ,g € G, p(ragha) = p, (k1) 0 9(g) © p, (K2).

It follows that the map ¥ from Lemma 3.2 corresponds to an operator T' €
H(KZ,p,) whose action on the elements [g,v] for g € G and v € Vp, Is given

by the formula (3).
Moreover,

Remark 3.3. A simple argument using the Bruhat-Tits tree of G shows that T'
is injective on indf(zgk.

3.2. Lattices

We keep the notations of Section 3.1 and denote by BZ*O, for o € S and k € N,
the representation of the group KZ on the Og-module

k
Doc -z,
i=0
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of homogeneous polynomials of degree k, on which an element ( Z Z ) e K
acts by

( . > (#5778) = (o(a)s + o()ys)" ™ (0 (b)zs + o(d)ys)'

and the matrix 703 203 € Z acts as the identity. If w, € BZ’O and if g € G,

we simply denote by gw, the vector obtained from letting g act on w,.

Definition 3.4. Let V be a C-vector space. A lattice £ in V is a sub-O¢-
module of V, such that, for any v € V, there exists a nonzero element a € C'*
such that av € £. A lattice £ is called separated if [,y @™ L = 0, which is
equivalent to demanding that it contains no C-line.

Example 3.5. The Og-module BZ’O is a separated lattice of Py which is more-
over stable under the action of K Z.

Remark 3.6. There are many choices of possible separated lattices in a8 which
are stable under the action of KZ. Another natural choice (and in some sense
even more natural than ours), as pointed out by one of the referees, is the lattice

5 Yo
EPOC' (k— i)l

which, in the case ¢ > p, is different from p®°. However, as using this lat-
tice facilitates some of the technical aspects, others become more difficult. In
particular, we strongly use the divisibilty by powers of p of certain binomial
coeflicients, which is not possible when using this alternative lattice. Therefore,
we have not been able to use different lattices in order to prove more cases of
the conjecture. We have further hypothesized the possibility of using different
lattices for different values of vg(a), but this as well did not yield any results.

Example 3.7. We denote by 82 the representation of KZ on the following

space
o 7,0
ng - ® Py,

oc€eS

Z ) € KZ acts via

i (en)-el(ii)e) o

The example 3.5 assures us that the Oc-module Vpg is a separated lattice of

on which an element < (z

the space V), ~constructed in Section 3.1. Therefore, the O¢-module ind%zgg
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is also a separated lattice of ind?( ZPy, and is, by construction, stable under the
action of G.

By Remark 2.3, we can deduce the existence of an injective map H (K Z, Bg) —
H(KZ,p,). Moreover, one verifies that the operator T' € H(KZ,p, ) defined in
Section 37.1, induces by restriction a G-equivariant endomorphism of indf( 7 Bﬁ ,
which we again denote by T.

The following Lemma is proved in [9, Lemma 3.3], but for sake of completeness
we include here a proof of both isomorphisms.

Lemma 3.8. There are isomorphisms of Oc-algebras Hyo (KZ,G) ~ Oc¢|T)]
and H, (KZ,G) ~ CI[T]. N

Proof. The space ng is an absolutely irreducible g ®g, C-module, hence by
Lemma 2.5, lp, is an isomorphism of C-algebras. Lemma 2.4 shows that there
exists a unique morphism of C-algebras up :He (KZ,G) = H, (KZ,G) mak-

k
ing the following diagram commute

Hiz(C) —Hc(KZ,G) (7)

Hicz(p,) — > Hy, (KZ.G)

By construction, this morphism is an isomorphism of C-algebras. Denote by
T, € He(K Z,G) the element corresponding to 1xzo-1x7 € Hiz(C) by Frobe-
nius reciprocity.

If ¢ € Hxz(C), then as it has compact support, by the Cartan decomposition
(1), it is supported on [[_ KZa 'K Z for some integer n. As ¢ is KZ-bi-
invariant (recall that C is the trivial representation), its restriction to each
KZa "KZ is constant, hence we may write ¢ = Y1 (¢; - Lgza-ircz. Let
T, € Ho(KZ,G) be the operator corresponding to 1xz.-ixz by Frobenius
reciprocity. Then we see that the T;,’s span Ho (K Z, G) over C. Geometrically,
T, is the operator associating to a vertex s the sum of the vertices at distance
n from s: this is because

lkza-nKz = E lkz. =
KZzeKZ\KZa—"KZ

= > 2711 = > 7t (1,1
KZxe KZ\KZa-"KZ KZxe KZ\KZa~"KZ

and then the z7!sy are all distinct and give all vertices s’ € Ty such that s’ is
K Z-equivalent to s, = a~™sp. This means that (sg, s’) is equivalent to (sg, sy),
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which is precisely our assertion. From the geometrical description of T,,, one
gets directly, since the tree 7 is (¢ + 1)-regular, that

T = To+(q+1)Id
Tl = Th+ an72 Vn >3

It follows that for all n, T,, € O¢[T1] is monic of degree n. In particular,
Ho(KZ,G) ~ C[Th]. Since up, (T1) =T, it follows that H, (KZ,G) ~ C[T].

k

Let us show that the restriction of this isomorphism to ’Hgg (KZ,G) has image
OclT).

AsT € Hy (KZ,G), clearly O¢[T] is contained in the image. Let p(T) € C[T]
be a polynomial corresponding to an element in HB% (KZ,G).

Assume deg(p) = n, and let a,, be the leading coeﬂzlcient, ie. p(T) = a,T™ +

Prn—1(T), where deg(p,—1) = n — 1. Tt follows that p(T) = a, Ty, + ¢n-1(T), for
some ¢ with deg(g¢n,—1) =n — 1.

We recall that T;, is the image under the natural isomorphisms of 15 74-niz €
Hy 7 (C), which maps to 1xz4-nxz P, € HKZ(Bk)v finally mapping to

Tn([ganD = Z [ng lKZa*nKZ(xil)BE(Iil)(v)} =
*KZeG/KZ

= > gz, py (z7 ") (v)]

ctKZeKZa " "KZ/KZ

Since a™ € KZa™"KZ, and polynomials of order less than n are supported on
n—1

"o KZa 'K Z, it follows that for any v € P, one has
(p(T)([1,0]) (@) = (anTu([1,v])) (") = anp, (@™ ")(v) = anUj (v)

where the right most equality follows from (5).

In particular, taking v = Q,.p ¢ y(’jd, we see that v € Bz’ hence [1,v] €
ind%zgz. As we assume p(T) € Hﬁz(KZ, G) = Endo,(q (indf(zgz), it follows
that p(T)([1,v]) € ind%zgz, hence a, U (v) = (p(T)([1,v]))(a") € BZ' But, by

definition of U, we see that Uy (v) = v, hence a,v € BZ.

However, by definition of Bzv this is possible if and only if a,, € O¢. Therefore,

we see that a,T™ € O¢/[T], and it suffices to prove the claim for p(T) — a,T" =
Pn—1(T), which is a polynomial of degree less than n.

Proceeding by induction, where the induction basis consists of constant polyno-
mials, which can be integral if and only if they belong to O¢, we conclude that
p(T) € Oc[T]. O
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3.3. Formulas

We keep the notations of Sections 3.1 and 3.2. For 0 < m < n, we denote by
[1m : I, = I the “truncation” map, defined by:

4] Yt @] m>1
P I

For i € I,,, we denote
B [pn—1
wn—l

)‘H = cl;

so that if p = Z?;OI @[], then A, = [pn—1].
We then have the following two results (see [3, 9]), where ¢ denotes the function
defined in Lemma 3.2.

Lemma 3.9. Letne N,u € I, and let v € VBZ‘ We have:
T (lgn.p: ) = T (90,45 0]) + T ([9,5])
where

T ([99,00)) == D2 [0 prmmn, () 0w 0 py (wn)) (0)]

A€

and

T ([gg’wv]) = {[[og[i;zo[ﬁnl;(l;)(]pk(ww)\,) o 1/J(0F1)) (v)} Z:(l)

Lemma 3.10. Letn e N,y € I,,, and let v € Vﬁg, We have:

T ([grlL,wUD =T ([grlp,wv]) +1" ([grlz,wUD

where
T+ ([9711,;“1)]) = Z [Qiﬂ,wmn/\ <¢(a—1) OBE(WXLU)) (v)}
el
and
T~ ([9n000]) = Ty (203 0 0@ 0 p () )] 021

1d, (p,(w) o v(a™1) 0 p (w)) (v)] n=0
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By using the equality g, , = B¢y ,w, these two Lemmata yield the following
two equalities:

T (lgp ) = BT (g0 2, (W) (0)])
T~ ([gnv) = BT ([gn o p, (w)()])
and also the following result
Corollary 3.11. Letn € N, y,A € I,, i,5 € {0,1} and v1,v5 € Vgg. Ifi #j
or if u # A, then T+([gfw“v1]) and T*([gfl))\, va]) have disjoint supports.
The following Lemma is a simple generalization of [3|, Lemma 2.2.2.

Lemma 3.12. Let v =7, Ci€ki € Vo and A € Op. We have:

Proof. Equation (8) is proved in [9] and equation (10) is immediate. For equa-
tion (9), we note that by equation (4), we have for any o € S and any 0 < i, <
ko:

1 =X
(wowyoUy,) (ek,.i,) = ( 0 1 ) (U(w)k” ’”ekmlo) =

= a(w)k"ﬂ"’ ke Tl (y 4 o (=N)z)t =

_ 0( k fzo. ( ) Zo' ngkafjcyya _

( ) N e, g,
Using equation (6), we deduce that

(pr(wwy) o p(a~ Z Ci+ ® wowyoUs,) (ex,,i,) =
0<i<k €S

ko—io |

CY w @ (o Y (7 )atn e

0<i<k  o€S jo=0
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=2 a [[e@7 3 H( )‘HJ(—A)i“‘j"ekJ=

0<i<k oceS 0<j<ioceS ceS

=2 | X = (2) ce (AT ey

0<j<k \j<i<k =
O

This leads to the following corollary, which is a simple generalization of [3],
Corollary 2.2.3.

Corollary 3.13. Let m € Zsg, a € C, and for any ,u € Iy (resp. p € I,
resp. p € Ipmi1), Um = Zo<i<k CZL " Ckyi (resp. Uu ZO<z<k o 1 " Chyis

resp. vt = ZQSZSE Z: ~ex,i) an element of p, . We denote
0
fm = Z [gm,;uvzl]
wELm
1
fmflz Z [gm l,u’vm ]
JZIST P
1
= 3 e
HELm 41
Then
0
(fm+1)+T (fm 1)_afm_ Z gm,p,a C;np, Ck,j
HELm, 0<j<k
where
(i ; y
= ¥ o (D)5 et 3 it () e
J<i<k J AEkF j<i<k J

4. A Criterion for Separability

4.1. The main result

We adhere to the notations of Sections 3.2 and 3.3 and fix an embedding ¢ :
F — C. Denote
St={0ceS|k,#0} CS

We partition ST with respect to the action of o € ST on the residue field of F.
More precisely, for any [ € {0,..., f — 1}, we let

Ji={ceST|o\)=1oph(\) YA€}
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where Iy = {[¢] | ¢ € kr}. In particular, we remark that
f-1
[[7n=5% viefo,....f-1} |5]<e
=0

For any integer i € Z, we denote by i the unique representative of i« mod f in
{0,..., f —1}. We also let, for any o € J;, v, := [ and

ve =inf {i |1 <i< f,Jz # 0}

that is the minimal power of Frobenius ¢y needed to pass from J; to another
nonempty Jx.

Let a € po. We let

I indIG(ZBE
k,a = " .
BT~ ) (indG p,)

This is a locally algebraic representation of G, which can be realized as the
tensor product of an algebraic representation with a smooth representation.
More precisely, we have the following result, which is stated in [9].

Proposition 4.1. Let u, = %“ foranyo € S.
(1) If a ¢ {£((¢ + 1)}, then Iy, is algebraicly irreducible and

Iy o = BE@) Indg(nr()\fl) ® nr()\gl))

where \1, Ao satisfy
A1y = wﬁ, A+ glo=a

(1) If a € {£((¢ + 1)w™}, then we have a short exact sequence

0—=p, ® Ste ® (nr(6) o det) — Iy 4 — 2 ® (nr(8) odet) = 0

where Stg = C°(P1(F),C)/{constants} denotes the Steinberg representation of
G and where § = (¢ +1)/a.

As in [9], we define

@E,a = Im (Z?’Ld%zgz — Hk,a)
which is the same as
ind?(ZBZ

O.a = - - .
B indG 00 0 (T — a)(indG 4p,)

This is a lattice in Iy, , and, since ind$ 2Py is a finitely generated O¢[G]-module,
we see that Oy , is also a finitely generated O¢[G]-module.
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Now, the Breuil Schneider conjecture 1.2 asserts that PO admits a G-invariant
norm. B

By [11, Prop. 1.17], this is equivalent to the existence of a separated lattice,
and even to any finitely generated lattice being separated.

The following conjecture is then a restatement of the Breuil-Schneider conjec-
ture.

Conjecture 4.2. The O¢-module Oy, does not contain any C-line (it is sep-
arated).

We also recall that Breuil, in [3] proves the conjecture for F = Q, and k < 2p—1,
and that de Ieso, in [9], proves it when |J}] < 1 for alll € {0,..., f — 1} and for
any 0 € ST, ky +1 < pYe.

The idea, as in [3], is to reduce the problem to a statement which we can prove
inductively, sphere by sphere.

As we shall use that idea repeatedly, we introduce a related definition. Abusing
notation, we denote by By C ind$% zP,, the set of functions supported in By =

B 11 By, where BY = [[ < S9,, By = [1ar<n Sir» and we have defined
S =IlaMKZ Sy, =180 MKZ

We also recall that B®, B! denote the sets of functions supported on Unx BY;, Uy B,
respectively.

Definition 4.3. Let £ € N° and let a € Oc. We say that the pair (k,a)
is separated if for all N € Z- large enough, there exists a constant € € Zx
depending only on N, k,a such that for all n € Z>o, and all f € B°

(T —a)(f) € By + w”indf(zgg = feBy_1+ w”feindf(zﬁg (12)

Remark 4.4. We slightly abuse notation here, as w ¢ C, but as vp(o(w)) =
vp(w) = 1 for all ¢ € S, one may choose any embedding o : F — C, and
consider o(w)" instead.

The upshot is that we have the following result.

Theorem 4.5. Let k € N%, let a € Oc. If (k,a) is separated, then Oy, is
separated.

Proof. First, note that if (12) holds for all f € ind?;zgk, then the proof of [3],
Corollary 4.1.2 shows that ©y , is separated.

Next, for an arbitary f € ind%zgk, write f = fO + f! with f° € B? and
f' € B'. Then by the formulas in Lemma 3.9 and Lemma 3.10, it follows that

supp (7' — a)(f°)) Nsupp (7'~ a)(f')) S So = Bo € Bw
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If we assume that
(T = a)(f*) + (T = a)(f) = (T — a)(f) € By + @"ind zp],

it follows that both (T — a)(f°) € By + w”ind%zgg and (T —a)(f') € By +
w”ind%zgz.
Since f° € B and (k, a) is separated, it follows that f° € By_; +w"‘6ind§(2B2.

Moreover, since T' is G-equivariant, and @? - Id acts trivially, we see that
B(T — a)(BF") = (T — a)(f*) € By + w"indS. ;0

Since 8 acts by translation, it does not affect the values of the function, and
since BBx = By, it follows that

(T —a)(Bf') € By +w”ind§zgz

with f! € B°. Since (k,a) is separated, we get 3f! € By_1 + wn_eindffzgz,
hence f!' € By_1 + w”*ind%zgz.
In conclusion

f=f"+f'eBy_1+ w”—%ndgzgz

as claimed. O

It therefore remains to show that certain pairs (k, a) are separated.

In this section, we will prove the following theorem:

Theorem 4.6. Assume that |S*| =1, denote by o the unique element in ST,
and and let k =k, = d-q+r, with 0 < r < q. Assume that one of the following
three conditions is satisfied:

(i) k < $¢* withr < ¢ — d and vp(a) € [0,1].

(ii) k < 2¢* with 2vp(a) —1 <1 < q—d and vr(a) € [1,¢€].

(#i1) k < min(p~q—1,%q2) ,d—1<7r and vp(a) > d.

Then (k, a) is separated.

Corollary 4.7. Under the above conditions, Oy, is separated, hence Il , ad-
mits an invariant norm.

Since our assumptions include the fact that |[ST| = 1, we may proceed with the
following notational simplifications.

We assume that C' contains F', and let ¢ = ¢ : F' — C be the natural inclusion.

We may further let & = k, stand for the multi-index k corresponding to k, and
similarly for all multi-indices.
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4.2. Preparation
Before we prove the theorems, let us first prove the following useful lemmata,
which we will employ later on.

Lemma 4.8. Let k be a finite field of characteristic p containing F,. Consider
a polynomial h € k[x], such that

h(z + ) €2l - k[z] VAETF,

Then

h(z) € (z? —x)’ - K[x]

Proof. We will prove the Lemma by induction on j. For j = 1, h(z+\) € z-k|x]

implies that h(X) = 0 for all A € F,, hence x7 — z | h(x), as claimed.

In general, h(z+\) € 27 -k[x] C x-k[x] for all X € Fy, hence h(z) = (27—z)-g(x)

for some g(z) € k[z], by the j = 1 case. But ged(z? — x,27) = x, hence we get
h(z+X) = (2?7 —x)-glx + ) €27 - k] = gz + \) € 277 - k[x]

for all A € Fy.
j—1

By the induction hypothesis, it follows that g(z) € (29 — x)’~" - k[z], hence

h(z) € (27 — z)? - k[x]. O

Lemma 4.9. Let k,d € N. Let h(z) = Zf:o ¢z’ € Oclz] be such that for all
0<j<d, and all X € Fy, we have

k .
Z <Z> Ci[)\]i_j € weOc
=7 J

where [\] € Op < Oc¢ is the Teichmiiller representative of A\. Then h(z) €
(27 — 2)™L . O¢[z] + we - Ocz].

Proof. By our assumption, since

k k i i
h(33+ /\): cz(x—|— )\)1: ¢ I\ =
QIEDCCEIVEDS j_o@ 5
k k .

we see that

hiz+[N]) € (asdﬂ, we) VYAEFR,
Equivalently, considering the image in ko = O¢/wcOc, we have h € kc[z] of
degree at most k, satisfying
h(z + A) € (z¥+1) for all A € F,,.
By Lemma 4.8, we see that h(z) € (29—x)%" -k [z], hence h(z) € ((27 — 2), w¢).
This establishes the Lemma. O
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Lemma 4.10. Let n,k,d € N. Let f(z) = Zf:o c;xt € Oc¢|x] be such that for
all0 <j <d and all A € Fy we have

zk: <z> i\ € whOc

=

where [\] € O — O¢ is the Teichmiiller representative of A\. Then f(z) €
(27 — 2)TL . O¢[z] + @l - Ocz].

Proof. By induction on n. For n = 1, this is Lemma 4.9. Assume it holds for
n — 1, and let us prove it for n.

Since w2 Oc C @ 'O, the induction hypothesis implies that f(z) € (27 — )4+, wg_l),
SO we may write

fla) = (27 —2)™ - g(2) + wg™" - h(@)
By (13), our assumption implies that
fla+N) € (2™, @) VAETF,
substituting in the above equation, we get
((z+PD? = @+ )T gle+ V) + @' bl + ) € (@ =)

But

-t =3 ()it = 3 () et o € e 0l

q
- 7
i=0 =1

since [A]? = [A] for all A € F,. This shows that ((z + [A\))? — (z + ) e
(x9+1) C (2%, @), hence

wi o h(z+ M) € (29T, wl) VAET,
which implies that
h(z 4+ [A]) € (2%, we) VAET,

Considering the reduction modulo we, by Lemma 4.8, it follows that h(x) €
(27 — 2)?, @), hence

f(z) e ((xq — x)d+1) + wgfl . ((xq - x)d+17wc) = ((xq - m)d"’l,wg)

establishing the claim. O
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Lemma 4.11. Letn € Z, k,d € N. Let f(x) = Zf:o c;xt € Clz] be such that
for all0 < j <d and all A € Fy we have

k

> (’)ciw—f € witOc

i=
where [\] € O — O¢ is the Teichmiiller representative of A\. Then f(z) €
(29 — 2)L . Cl2] + @l - Oclx].

Proof. Let L = ming<;<y vc(c;). Consider g(z) = w’-f(x) € Oclz]. ifn < L,
then as f(z) € whOc[z] C wEOc|x], we are done.

Else, g(z) satisfies for all 0 < j < d and all A € F,

k .
Z (Z) wol e\ e wi tOc

= M

with n— L > 1, hence by Lemma 4.10, g(z) € (2? —z)%+!. Oc[z] +wi L Ocla],
hence f(z) € (29 — )4t . Clz] + @l - Oc[z] . O

Lemma 4.12. Let n € Z and let k € N. Let d = |k/q]. Let (¢;)¥_ be a
sequence in C such that for all 0 < j < d, and all X € F,, we have

k .
> (2) N € nE0o
= M

where [A] € Op — Oc¢ is the Teichmiiller representative of . Then ¢; € wiO¢
for all0 <i<k.

Proof. By Lemma 4.11, we see that f(z) = Zf:o cix’ € (x4 — )4t . O] +
wEOc[z], but deg(f) < k < g(d + 1), hence f(x) € wikOclx]. This establishes
the Lemma. O

Lemma 4.13. Let k,d € N. Let f(z) = Zf:o c;xt € Clx] and let n € Z.
Assume that for all 0 < j < d, and all X € Fy, we have

k.

> <Z.)ciwj € w0

— \ j

i=j

where [A] € Op < O¢ is the Teichmiller representative of A. Then

¢ €wOc Y0<i<d

l
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Proof. By Lemma 4.11, we see that f(z) € (29 — 2)?*! . C[z] + w2 Ocx]. We
proceed by reducing f(z) modulo (29 — z)?+!,

In order to do so, we first have to understand the reduction of a general monomial
x! modulo (29 — x)*+L.

We prove, by induction on s, that for every 0 < s < {%J —d—1 and every
t > q(d+ 1) we have

d+1

1 -1

Tzt = 2 :(_1)l+1 (d ‘;‘Jr -Sf— 8) ) (l + 38 )xt_(l+s)(q_1) mod (xq _x)d+1 (15)
=1

Indeed, for s = 0, this is simply a restatement of the binomial expansion, as

gt — pt=(@+1)-q | (d+1)-q — pt—(d+1)-q , (x<d+1)q ~ (2% — x)dJrl) _

d+1 da1
_ pt(d+D) g (x(d+1)q _ Z(_l)l( l ) .(xq)(dJrl)fl _xl> _

=0

d+1
— pt—=(d+1)q Z(_l)Hl (d‘;‘ l)x(d+1)~ql(q1) _
=1

d+1
= Z(—l)l+1 (d—; 1) 27U mod (29 — )4
=1

Assume it holds for s — 1, and let us prove it holds for s.

By the induction hypothesis

d+1
d+s L+5—2\ 1 (es—1)(a—
r= e () (TR e o -y
=1

(16)

Since s < V‘qi}lJ —d —1, we see that
(—Dd+1+s)<t—(d+1)=t—-s(g—1) 2q(d+1)
This implies, by the case s = 0, that
d+1
pt=sla=1) = Z(_l)l+1 (d + 1) Lt (e=1) 04 (z7 — m)d—H
l
=1
Substituting in (16) we get

d+1
d+s d+1
t = N (L)l = (48)(g—1)

=1

d+1
d+s l+s—2
! t—(I4s—1)(a—1) _
+l§( ) <l+sl>< s—1 )m
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+

d+1
_ (_DZH d+s\(d+1\ (d+s\(l+s—1 ot (4s)(a—1)
- s l l+s s—1
Calculation yields
d+s\(d+1\ (d+s\(l+s—1\ _
s l l+s s—1 N

_ (d+s)Y(d+1)! (d+s)l+s—-1)!
TSl d+1=0)! (I +s)(d—D(s—1)!
C(d+s)-(d+1)-(I4s) (d+s)-s-(d+1-1)
T (4 s)-sd+1=0"  (4s)-(d+1-Dlls!
_ (d+ s)!
(I +s)-sN(d+1 1)

~

(d+Dl+(d+1)s—(d+1)s+sl) =

(d+s+1)!
T U+s)sl-Dld+1-0
(d+1+s)!  (I+s—1) d+1+s\[(l+s—-1
T UHsNd+r1-n s g—1) ( I+ )( s )
establishing the identity (15).
It now follows from (15), by letting t = j + (¢ — 1) and s =1 —d — 1, that

d+q— 1 a— 1J
ZCZ:E —chx + Z Z Cjti(g— 1)gCJ+l(q 1) —
j=d+1 1=0
d+q—1 [ d Lk_JJ d+1
j=d+1 \ =0 l=d+1 r=1
d+q—1 d
—chx—k Z Z Cit+i(g-1) + Z Om.1.d * Cj4m(g—1) 2D mod (29—z) "t
Jj=d+1 1=0 m=d+1
where l o
+l—-—d—-2
g = (—1)"T1 ("
i = (=1) <r+ld1> ( l—d—1 >
and

St = (—1)0 <Tln) (m ;_ll— 1).

As this is a polynomial of degree less than ¢(d + 1), and we know that f(x) €
(27 — )@+ . Cl2] + @ - Oclx], it follows that it must lie in w? - O¢/|z].

In particular, ¢; € widO¢ for all 0 < i < d, and looking at the coefficient of
27+ 4a=1) yields (14), as claimed. O
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Lemma 4.14. Let q be a power of a prime number p. Let k =d-q+r be such
that d < q and 0 <r < q—d. Then for any 0 < i <r, any 0 < j < d and any
. k—i

j+1<1<d, one has p | (kfjfl(zfl)),

Proof. Since i < r < ¢, we know that 0 < r — ¢ < ¢ and d < ¢, so that
k—i=4d-q+ (r—1i) is the base ¢ representation of k — i.

Since j+1<{<d,onehas 1 <r+1<r+l—-j<r+I01<r+d<gqgandit
follows that

k—j—lg—1)=d-g+r—1l-q+l—j=Wd—-1) g+ (r+1—7)

is the base ¢ representation of k — j — (g — 1).
Finally, by Kummer’s Theorem on binomial coefficients, as for any [ > j + 1
and any ¢,7 > 0,

r+l—j>r+1>r>r—i
there is at least one digit in the base p representation of r +1 — j, which is larger
than the corresponding one in the base p representation of r — 4, hence

ol ( k—i )
k—j—Uqg—1)
establishing the result. O

Lemma 4.15. Let a € Z. The matric A = An(a) € Z™ ™ with entries
(Aii)i=1 = (fj'll) satisfies det A = 1.

Proof. We prove it by induction on m. For m = 1, this is the matrix (1), which
is nonsingular.

Note that for any 2 <1 < m, and any 1 <1i < m, one has
a+1 B a+l-1\ fa+l-1
i—1 i—-1 ) \ i-2
where (_kl) =0.

Therefore, subtracting from each row its preceding row, we obtain the matrix

B, with By; = Ay; for all 1 <¢ <m, and By; = (aj_lgl)

By the induction hypothesis, the matrix (B;)]",_, is in fact Ap,—1(a), det(Bu)—y =
1. But, as Bjy = 0 for all [ > 2 and By = 1, it follows that det A = det B =

1. O

Corollary 4.16. Leta € Z, m € N. Let t € {2,...,m}. Consider the matriz
A € Z™*™ with entries

a+l t<i<m
Ali_{gfz—i-llll) 17i7<t Vie{l,2,...,m}
i—1

Then det A = 1.
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Proof. This matrix is obtained from the one in Lemma 4.15 by adding each of
the first ¢t — 2 columns to its subsequent column, since

a+l+1 B a+1 n a+1
i—1 S \i—1 i—2

As these operations do not affect the determinant, the result follows. O
Corollary 4.17. Let k e N. Writek=d-q+7r, with1 <d<p, 0<r <gq
and assume that d —1 <r. Let 1 < m < d. Then the matrizx A € IF;"X"L with

entries (Air)—; = (m]f[lg_ll)), is monsingular.

Proof. For any 1 <1 < m, we note that m + (¢ — 1) = lg + (m — 1), hence (as
d<gandr—i+1>r—d+12>0) by Lucas’ Theorem

k—1+1 _(da+r—i+1\ _ (d r—i+1 mod
m+1l(qg—-1)) \lg+m-1))  \U m—1 b
Since 1 <1 < d < p, we get that the (7) are nonzero mod p, hence we can divide

the [-th column by the appropriate multiplier without affecting the singularity
of A, call the resulting matrix B.

Then B;; = (T;ifll), which up to rearranging rows and cloumns, is the matrix

from Lemma 4.15, hence nonsingular. W O
4.3. The case vp(a) > EJ
In this section, we will prove the following theorem, which will establish (#i¢) in

Theorem 4.6.

Theorem 4.18. Let0 < k < min (p -q—1, %) Assume further that k = dq+r

withd—1<r < q. Let a € O¢ be such that vp(a) > d, and let N € Z~q. There
exists a constant € € Z>o depending only on N, k,a such that for all n € Z>,
and all f € md%zgk

(T —a)(f) € By + w”ind%zgg = fe€ By +w”76indf(zgg

Proof. As before, we may assume that f = Z%:o fm where f,, € S]({,+m, and
denote f,, = 0 for m > M. Looking at Sy 1., we have the equations

T (fns1) + TH (fmo1) = afim € w"ind$ 500 1 <m < M+1

We shall prove the theorem with ¢ = d.
Assume, by descending induction on m, that f,,, frn41 € w”_dindgzgg. We
will show that f,,_1 € w"‘dindgzﬁg.
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By the above equations, we immediately obtain from (11) (note that af,, €
w”ind%zgg, since vp(a) > d)

ko,
> (;) AN e w0 (17)
i=j

forall p € I,—1,all A€ Fy,and all 0 < j < d.

By Lemma 4.12, it follows that for all 7, "~ e @20,

Next, for any 1 < j < d, consider the formulas for C""
Note that j +1(¢g—1) <d+d(qg—1)=dq < k.
Since k < ¢%/2, one has

i(g— 1)Mf0rany1§l§d.

so that n — 2d + ¢ > n.
Therefore, we get that

wj+l(q—1)<‘+l(i 1)) m—1 qu m— 10 Cwn 2d+q0 Cw OC
J q—

for all j,1. Since for i < k —d, @? | @¢~% and czn,;rlwm[ A € @w" " ?O¢, it follows
that
a i
m — k—i m—+1 i—j—l(qg—1) — n
AR >, @ (j+l(q— 1)) Gpampy AT =0 mod @ Oc
i=k—d+1 AERR

Since k=d-q+r, withr >d, weseethat k —d+1—-d-gq=r+1—-d>1,
showing that for any 1 <1 < d,any k—d+1<i<k,wegeti—j—I(g—1) > 1,
hence for any A € kg, [\'7~Ha=1 = [\]*"J. (Had i — j — I(¢ — 1) been 0, this
is violated when A = 0!).

By the induction hypothesis, we know that cm+1 € w"?0¢. Write, for 0 <

i<d-1land 1l <j <d, Z/\GFQ C’le;’l#+7rnl[)\][)\}k i~ = 4. g, for some
z;; € O¢. Then the above equations for 1 <1 < d yield
d—1
w -z =0 mod w? 18
=5 g ) s

Let us prove that that z;; € @/ ~'O¢ for all 1 < j < d and all 0 <4 < j. Note
that for ¢ = j, it is trivial, so we will prove it for 0 <i < j — 1.

Indeed, fix j. Then, looking modulo w?, and setting Yij = wixij, one obtains
the equations (for all 0 <i<j—1landall 1 <l <j)

k—i ,

-~ <.
i M ]
[} —_
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By Corollary 4.17, with m = j, we see that the matrix of coefficients here
is nonsingular modulo p, hence also invertible modulo w?, and it follows that
yij € @ O¢ for all 0 <4 < j — 1. But this precisely means that

Tij = wilyij S wjilOC

as claimed.
Therefore,
@Y o W =@t @ ey € @O0
AeF,
Considering now the formulas for C7,, with 1 < j < d, we get
Ny
> (0)etn e e w o
= M

This also holds when j = 0 trivially as a conequence of (17).

Hence, applying once more Lemma 4.12,

m—1 n—d
¢, €w “Oc¢

as claimed. Therefore, in this case, taking € = d suffices. O

4.4. The case 0 < vp(a) <e

In this subsection, we will prove the following theorem. Since the case vr(a) = 0
is covered by [9, Prop. 4.10], it establishes (¢) and (é¢) in Theorem 4.6, for that
case.

Theorem 4.19. Let 0 < k < ¢%/2. Assume further that k = dq + r with
0<r<gq—d. Letaé€ Oc be such that 0 < vp(a) < e. Assume either that
0 <wp(a) <1 or that 2vp(a) —1 <r. Then (k,a) is separated.

We prove the theorem by considering two cases.

We shall first prove the case where max(2vp(a) —1,1) < r, and then the case
r=0,vp(a) <1

Unfortunately, we have not been able to provide a proof for the case 0 < r <
2up(a) — 1.

Proof. Let [ € ind%zgk be such that (T'—a)f € By + w"ind%zgg. We may

assume that f = Z%:o fm where f,, € Sny4m, and denote f,,, =0 for m > M.
Looking at Sy 4m, we have the equations

T~ (fms1) + T (fm-1) — afm € @ indGzp) 1<m<M+1 (19)
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Our proof will be based on descending induction on m, showing that if f,,,, fm+1
are highly divisible, so must be f,,_1.

We will initially obtain some bound for the valuation of f,,_; using f,, and
fm+1, and then we will use that initial bound to bootstrap and obtain better
bounds on the valuation of f,,,fmn+1 and, in turn, f,,—1.

Moreover, we may assume that f,,, € S% 4 m> using G-equivariance.
We refer the reader to the definition of the coefficients ¢]”, in Corollary 3.13,
and to formula (11). B

As under our assumptions [ST| = 1, we will usually replace the multi-index
notation j by j = j,.

The idea of this part of the proof is as follows - the contribution from the T'F
part (the inner vertex) has high valuation when j is large, while the contribution
from the T~ part (the outer vertices) has high valuation when j is small.

Let us introduce the statements <7,,, B, €, P for the rest of the proof.

The assumptions o7, are made to ensure that for small values of j, the con-
tribution from Tt is of high enough valuation, hence we can infer something
about its preimage (by the previous Lemmata). These give us the initial bound
for the valuation of f,, 1.

In the bootstrapping part, this bound shows that for large values of j, the main
contribution comes from 7T~ , whence we must use 4,, in order to obtain better
bounds on the valuation of f,,. These bounds for large values of j can improve
our bounds for small values of j by using the assumption %,,, which is a linear
relation involving one small value of j, while all the others are large.

Finally, this is used to obtain a better bound on the valuation of f,,_1, estab-
lishing the theorem.

wn,j wnfd
Ay €00 W< j<d, o€ Oc W<i<k Vuel,
, a ’
- wn—j ' - wn—d '
B, - Chjn € T.OC V0 < j <d, Cy € Oc Y0<i<k VYuel,

la=) -
s wh . ) . .
i 2 <.7'>'Cﬁs(q—1),u€ o Q¢ Vitl=i<ite-l, Wo<j<d
s=j

n

Do € O VO<i<k
a

2y

Assume, by descending induction on m, that <%, B, Bm+1, € hold for all
Ly A

Note that, as far41 = farre = 0, they trivially hold for m = M + 1. We will
prove that <, _1, Bin_1, Bm, Em—_1 hold.

For this, we make use of the subsequent Lemma 4.20.

We assume 7, B, Bin+1, Em, hence by Lemma 4.20, we know that <7, 1, €n—1, Dm
also hold.
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m—1 c

It remains to show that 2,1 holds. In fact, we need only to show that ¢;'~ i

=" O for all 0 < j < d.
Note that since %, holds, by applying Lemma 4.20 to m — 1, we see that
Ln—_2, Gm—s hold as well, and so does Z,,_1.

Next, we see from &, 1 that we have c;c”:}“ f—;(’)(; - %_j(’)c for all

vp(a) < j < d, which we get “for free”. Therefore, it remains to show that
CZL:;H e @ . O¢ for all 0 < j < min(vp(a),d).

a

Fix some 0 < j < min(vgp(a), d).
Now, since by Lemma 4.14, p | (k_j_j(q_l)) for all k — 2vp(a) < i < k and all

J+1 <1< d (here we use 2vp(a)—1 <r < g—d), and by B, [, wn;k+ioc
for all k — 2vp(a) < i <k, we get (as @® | p) that
] n—k—+i n+e
i ! L cm k—ite W o, _ = On C 5O
w (k—j—l(q—l)> CLMEW a C a c Cao"'O¢
(20)

where the last inclusion follows from vg(a) < e.

Furthermore, since we have shown ,,, we know that ¢}, € f—;@c = @ 20r(@) O
for all 0 < i <k, hence for i < k — 2vp(a), we get

wh? e, € w?vr@)  gn=2vr(0) O = " Of. (21)

At this point we make use of the hypothesis (19).

It then follows from equation (11) for C,T__jl_l(q_l), and equations (20), (21) that

for all p € I,,—1
b i
k—j—U(q—-1) . L em—2 _\ i—k+iti(g—1) _
“ 2 (k —j—llg- 1)) bl s )
i=k—j—Il(q—1)
—1 n
—a- c?_j_l(q_lm € w"O¢.

But recall that | < d, so that
k—j—Il(g—1)=(d=1)-(¢—1)+(r+d—j) > r+d—j > d+max(1,2vp(a)—1)—j

where in the last inequality we use our assumption that » > 1.
n—d

Since we have established ,,_s, we know that cf’bu_ 2 e “— - Oc, hence
wk—i—la—1) .0;7,:2 c w"*m"“‘“i”F(”)*l)*] 2O Cw" 0.

. m—1 —q
Therefore, we obtain that a - Chej—1(g—1)p € w""IO0¢, hence

m—1 wn—j .

Ck*j*l(qfl),;t c 70(} Vj + 1 S l S d. (22)

We shall now use €,—1 to infer from the divisibility of these coefficients, the
divisibility of the coefficient ckm__jlu by w:] as desired. This shall be done as
follows.
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Let ¢ be the unique integer satisfying j +1 <i<j+g—1suchthati=k—j
mod (¢ — 1), and let Iy = V’iJ, so that k —j = i+ lop(¢ — 1). (Recall that

q—1
k—j+q—-1>2k—d+q—1>k).

If i <q, welet A€ ZUt)*G+D) be the matrix with entries Ay = (lot l)tl o

If ¢ > q, we let A be the matrix with entries

_ (lot—l) i—g<t<j |
Atl{(lo1:l+1) 0<t<t—q VZE{Oa ) ,...’]}

In cach of the cases, A € GL;1(Z), either by Lemma 4.15 or by Corollary 4.16.

Therefore, there exists a non-trivial Z-linear combination of its rows, some a; €
Z such that for all 0 <1 < j

J
Z oAy = 51,0- (23)
t=0
For t > i — g, substituting in %,,_1 the value t for j, we obtain for all y € I,,,_1

lo n—t n—j
_ s w w
:t::E ()-ml € ——0O¢ C a -Oc¢.
t

t z+s(q 1),p a

Note that indeed t +1 < j+1<i<t+4¢g—1, as required.

For 0 <t <i—gq, substituting in %,,—1 the value ¢ for j and the value i — (¢—1)
for i, we obtain for all u € I,,,_1

lo lo ‘
Sy = ST g = ). m-1 w w
CVRES Zl ( t >.Ci+s(q1),# = Z (t) G (s—1) (g1 € - O C - O

s=t— s=t

Note that indeed t+1 <i—(¢—1)<j<d—-1<qg—1<t+q—1, as required.

Considering the linear combination Y ]_, &Z, we see that

Gl s+1
m—1
at( t ) Citsg—1)m T Z Zat() o=y =
1

t=0 s=t— t=i—q+1 s=t

Nor
a

J _
- @
= E g €
t=0

which, reindexing, is the same as

lo+1 [i—q lo J
—-1+1 1 lo—1 1
Z( ( )) Chjo Uq—1),p Z Z at( t > - Wq=1),p

t=0 1=0 \t=i—g+1
(24)
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B lo+1 /i—q lo—1+1 o lo J lo—1 o
- Z Zat t 'Ci+lo(q*1)*l(q*1)’u+z Z ey “Citlo(g—1)—1(g—1),p

1=0 \t=0 1=0 \t=i—q+1
which lies in ? - Oc¢.
Since we assumed that r < ¢ — d we have
k—j—(d+1)g-1)<k—(d+1)(g—1)=d-qg+r—(dg+q—d—1)=
=r—(q—d-1)<0<1<j+1<i=k—j—lg(¢g—1)
showing that Iy < d, hence for every j+1 < [ <y, by (22) we have cZ’:jlfl(
%ﬁ@o, so that (24) yields

q—1),p =

J

J
m—1
t=0

=0

i [i-a j _
lo —1 +1 l() —1 1 wn
- Zat( ¢ ) + Z at( ; ) ST Y -Oc.
1=0 \ t=0 t=i—q+1

m—1 oI
k—jn € " a

Now we apply (23) to see that this is no more than c - O¢, as

wanted. This establishes %,,_.
At this point, we have established 7,1, B -1, B, Cm—1 from oy, By Bint1, G-
By descending induction, this shows that <, B, Bm+1, €m hold for all m.

. . . n—d
In particular, considering for example 7,;,, we see that for any m, ¢}, € = —-

O¢ for all 0 < i < k, showing that f,,, € w™ (@+vr(@) . O for all m.

Thus, we have shown that if (T'—a)f € By + w"ind?(zg% then f € By_1 +
(@) . O,

Therefore, in the case max(2vp(a) — 1,1) < r, taking € = d + vp(a) suffices in
order to show that (k,a) is separated. O

Lemma 4.20. Assume that for some m, 2y, Bi+1, €m hold. Then 1,6 m—1, Dm
hold as well.

Proof. From (19) and (11) we see that for any 0 < j <d

k . k )

_ k—if +1 i—j j —1 ( i—j

Cilu = Z @ <j> C;tlu—s-w"”[A] (A" 4w’ Z czm,[ﬂ]m_l (]) (=) —acf, € @"Oc
i=j i=j

Aekrp
(25)
where A\, = %
By the hypothesis %41, for any k —d < i < k (and any p), we have cﬁj‘l €
=" " Oc, hence wh - cg'flj'l € %ﬂ -O¢.

a
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Also, for any 0 < i < k — d, by %41, we have cm+1 € %ﬂi - O¢, hence
d
kl'Cleeiwm OC—T OC
We conclude that for any 0 < ¢ < k, one has

it e P, (26)
) a

w

This implies that the first sum in (25) lies in Tn - O¢, hence

o m o
ZU‘? Z >[M m—1 ( ) _)\M>z I = acj#‘ € TOC (27)
Furthermore, for any 0 < j < d, by 7, we know that ¢, € =""? . O¢, hence
acj, € w" I O0¢ (28)

o If vp(a) < j, we see that w"/a € w"7O¢, so we get from (26), (28), and
(25) that

w]Z( ) z J e goh— ]OC = Z( ) m— 1[>\]i—j e wn—QjOC (29)
J
i=j
for all vp(a) < j <d, for all p € I,,,_1 and for all X € kp.

o If j < wp(a), we see that w" ™7 € % -O¢, so we get from (26), (28), and (25)
that

N RTINS () EREE

n—j

- Oc. (30)

In particular, by Lemma 4.12, we see that if vp(a) < d, then c%‘l € w"20¢

for all 0 < i < k, and if vp(a) > d, thencznu1 c wnfd -Oc for all 0 < i < k.
Substituting A = 0 in (30) we get c;”; =" 0.
Therefore, if vp(a) > d, we have already estabhshed y,,—1. In this case, since

n—d

=" € 2 Oc, D trivially holds.

a
If vp(a) < d, we consider the coefficients C3} ,,C34,, ..., CF,. By (25) and
(26), using the fact that ¢~ ' e w20 for all i, we get that acl’, € =~ 0¢
for all j > 2d.
In particular, since, by assumption, q > 2k/q > 2d, we get that for any 1 < j <
2d — 1 and any 1 <1,

JHUg—1)>1+(¢—-1)=q>2d

hence ¢™

c ="
G+1(g—1),u TZOC'
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By the assumptlon Gm (subbtltutmg j for i and 0 for j), it follows also that
€ @' O¢. Therefore ac!, € W—Oc for all 1 < j < 2d — 1, hence for all
O < J < k establishing Z,,,. Note that the case j = 0 is given by 7,.

We may now consider once more the equations for C7",,, ..., Cy"
.

4. and get from
(26), (25) and Z,, that V1 < j <d

n—j

w]Z()ml z]eOC:>Z<>TrL1 Zjewa OC.

When j = 0, this holds by (30). By Lemma 4 12, it follows that cm_1 wnfd Oc

for all 7. Also, it shows that cgnu !
A = 0. Therefore, we have established %m 1 in this case as well

Finally, for any 0 < j < d, and for any 0 <t < j

k : n—t n—j
2 : LY m—1pyji—t w w
(t> el T E o Gc&——0c

1=t

for all A € kp. Thus, by Lemma 4.13, substituting j for d and ¢ for j, we get
Gm—1- O

We now consider the case 0 < vp(a) < 1 and r = 0, using a different argument.

Theorem 4.21. Let k = dq, and assume 1 < d < & (note that this excludes
q=2). Let a € O¢ be such that 0 < vp(a) <1, and let N € Z~q. There exists
a constant € € Z>q depending only on N, k,a such that for all n € Z>q, and all

fe deZP,€
(T —a)(f) € By + w”ind%zgz = fe€Bn_1 +w”76indf(zgz

Proof. We may assume that f = an\f:o fm where f,, € S% +m> and denote
fm =0 for m > M. Looking at Sy, , we have the equations

T (fm+1) + TH(f—1) —afm € @ deZp 1<m<M+1

Assume, by descending induction on m, that the following hold:

7n+1 m—+1 w" - m—+1 Gjn_d -
E—Oc, e JME—OC Vo< j<d, c € Oc VO0<i<k Vu€ln1
a

(
k=i n n—d

w" w w
m m ] o
Co,u € TOC’ Z Citi(g—1),u € TOC Visjsd, ¢ €

Oc Y0<i<k Yuel,

m wn
>t e e —0c, VI€{0,1,2,...,d,g—1} Vp€ln (31)

AERKF
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We will show that the same formulas hold for m — 1, hence establish that they
hold for all 0 < m < M + 1.

First, for p € I,,_1 and A\ € kp, consider the formula for C’(TM tmoiy] > S€e

(11). By (31) with [ = d, using the fact that [A]2 = [}] for all A € kF, we know
that

n
m+1 ndq __ m-+1 nd w
§ Cr utwm=1[A+wm[\] P\ ] = E C it wm—1[Al+wm™ [\] P\ ] € a Oc
NeEkp NeEkp

which is the first summand in the first sum in (11) with j = 0.

m—+

. . n—d
For i < k — d, since we assume Cz,ﬂ+1wmfl[>\]+wmp«] S mTOC, we see that

n—d n
k—i m41 ni a @ ) _w
@ > e N €@ o Ye=—0c
NERFR
m+1 w”

Also, for k — d < i < k, since we assume Cir e =1 A+ [V] € 7007 we get

n
k—i +1 ni -~ @
okt Z CZIWrwm*lP\me[A’][)‘ P e - Oc¢
NeErp
This shows that the entire first sum in (11) with j = 0 lies in wT" -O¢. In
addition, we have assumed that C(Tu twm-iy € %n - O¢. Therefore

Next, we consider the formulas for iju+wm—1[/\} with 1 < 5 <d. By (31) with
l=d—jforj#dandl=gq—1for j =d, using the fact that [A\]2 =[] for all

A € kp, we know that

k m-+1 ndg—j __
<j) Z Ck,u+wm*1[kl+wmw][>‘] =

NEKFR

_ k Z Cm—',—l [)\l]l c zno C wnfdo

= ] kyutwm = [A+w™[N] a C = C
NERKR

which is the first summand in the first sum in (11).

Since for all 4, we have c;”l;_lwm,l[/\me v

we also have 1 < k — 4, hence

k—i { m+1 ni—j w
s (J) D Dl prenp N €@
NEKF

n—d
] € #—0c, when considering i < k

n—d
O¢ C wn_d(')c
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where the last inclusion holds as vp(a) < 1. This shows that the entire first
sum in (11) lies in w"~40¢.

Since we also have o — 1] S

k .
2 (Z)CZ:I[A]” € =" 00

im M

= 0c, by (11) we see that for all 1 < j < d

Therefore, by lemma 4.12 we have ¢~ e w240 for all i.

Let 0 < j < d. Looking at the formula for €y ; ,, using the fact that k — j >
dg—d=d(q—1) > 2d (recall q # 2), we see that the second sum satisfies

k .
wk—j Z (k i]) m—1 [)‘M]i_(k_j) e w2d . wn—QdOC = o"Oc

[l m—1
i=k—j

Also, we deduce from the hypothesis (31) with [ = j that

k om+l k—(k—j)
(k:j) Gprampy AT =
AEKF
k 11 ; k w"
= c min A € - —0¢ Cw"O
(k—j) L it (k—j) a =TT

since p | (kf ) = ((d—l);lj-(q—j)) by Kummer’s theorem, and vp(a) < 1.

m—+1
For ¢ < k — d, since we assume c. i o™ A we see that
. n—d n+1
k—if? Gl i—j d+1 @ _w n
“ <J> 2 e W €@ e 00 = =2 00 Cw"Oc

AERF
Also, for k —d < i < k, since we assume c :ﬂvm[)\] € an Oc¢,and 1 <k —1i, we
get

k—1 i m-41 i—j w"

w i . G rem [A] € w- -Oc =w"O¢
AERKF

This shows that both sums in (11) lie in @™ O¢, hence also
a-cpt;, €@ Oc

Furthermore, for any 1 < j < d, looking at the formulas for C"" (=)t cm

as J+1(¢g—1) > j+qg—1>q> 2d, by the same reasoning, we deduce from the
hypothesis (31) with I = d — j that

n

m
a-Cityg-1)u € a Oc
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k=i n n
Since ZIL:‘IO’IJ cﬁl(q_1)7u € Z-0Oc¢ for 1 < j < d, this shows that a-cf, € Z-0Oc
forall 0 < j <k.
We also note that p | (
therefore showing that

d+lc(l§_1)) for all 1 < [ < d, by Kummer’s theorem,

@ ciiig-,u €@ Oc
Since Z?:o C:in+l(q—1),u € anOc, we deduce that

n

w
Cd T Cdgu € TOC (32)

Therefore, we have established that

o o™ ) wnfd ]
CZT# € ?Oc, Czl_j,# € 700 V0 < j <d,, CZL S a Oc YVO<i<k
Returning to the formulas for Cf°,, CT",, . . ., Cgfu, we see that for all A € F; one
has
k n k n—1 k : n—d
1y @ s el Tie w i i w
ZCZ’,?HWGTOC, S i)l e —0c,., Z<d>cmlp\]z d o e
i=0 i=1 i=d

Therefore, by Lemma 4.12 we have c?f/;l € %ﬂl(’)g for all . Moreover, we see
that

[5=1] ned

_ w” w” . _ w
" ! S TOC’ Z Cﬁl(q71)7# S TOC V1 S J S d, cm” ! c

0,1 (N OC VO S Z S k
=0

It remains to establish (31) for m. Looking at the equation for C",, we see that
for all u we have

k .
2 — .
i=d

since p | (’;) = (‘Zq). Fixing p € I,,—1 and summing over all A € IF;, we get
g
a Z Cdyrrom=1[A] B Z <d> CZLAL_I Z N e =" Oc
PYS i=d A€F,

for any 1 € {0,1,2,...,d,q— 1}.

However, as

Z[A]iz{_l ¢= 1% 170 mod p

eF, 0 else

83



we obtain

]

d—1+h(g—1)
m 1 d m 1 n
TED DY D D G L e

A€F, h=1

Fix some [ € {0,1,...,d}. Note that for all h < d — I, one has

ol <d—l+5(q—1)> _ <h-q+(c;—l—h)>

This means we have

d
d—14+h(g—-1)
l d e 1
a § : Clprwm-1py A =@ E ( d Cd—tthg-1),u € @ Oc
AR, h=d—I+1

(33)
For [ = 0, this already implies
wn
D Cram-ipp € - Oc
A€F,
hence by (32)
D Cliprami| 6‘5*00
AeF,
For arbitary [, we proceed as follows.
Consider the formulas for Cf", Shopt e ,C(lel. We obtain as before that
i 2 € @20 for all i.
ge may now consider the formulas for Cg; llﬂ, C’Z 11 Yglt 10 C’”; ll+1)q L
ince

d—1+1)g—1>qg—1>2d

we get

l —1 n
(d— l+h(g—1 ) Z Cg ptom— 1A A" +a- C:j”_“rh(q_lm € w"O¢c
AEF,

for all d — 1 4+ 1 < h < d. Substituing back in (33), we get
d
1 dq d—1+ h (¢g—1)
D )-( ) e
( @ =it d—1l+hg—1) AEF

d d
Note that p | (dith(qil)) = ((hfl)q+5+d7l7h)’ hence

P (Z ) () 20000
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But, as vp(a) < 1 < 4 it follows that vp(a) < d+1—wvr(a), so that we must
have

@Y CgpremyN €700
AeF,

as claimed.

Finally, looking at the formulas for C’gfz—l, Ne¥in ql 1, we have

m—1 n
<d+ h(g—1 ) )\ZF: qu ptw™=1[A] [/\] "+a- Cdth(q—1),u e w"O¢
S

forall1<h<d-—1, and

m m—1 n
2 : Cdgu+wm—1[N] T4 Caqp €@ Oc

XeF,
Substituting in (33), and recalling that 3%_, c;’jrhl( -1 €% =~ O¢, we obtain
d—1
I d+ h —1) ! n
<a+a~w h ( ) <d+hq1>>zcdw+wmul[)‘] € w"Oc
=0 S

since w? | w? - (Cfiq).
Since vp(a) < 1 < 4L, this is only possible if D oneF, Clgutwm—1[] A7t e

WT"OC. Therefore, we are done, and € = d + vp(a) suffices. O
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Existence of Invariant Norms for p-adic representations
of Ug(F)

Eran Assaf

Abstract

Let p be a prime, and let F' be a finite extension of Q,. The p-adic Lang-
lands programme attempts to associate certain representations of GL,, (F') with
certain n-dimensional representations of Gal(@p /F). More generally, one ex-
pects to associate certain packets of representations of a reductive group G with
certain conjugacy classes of homomorphisms Gal (@p /F) — LG, ItV is a two-
dimensional p-adic representation of the group Gal (@p /Qp), it is known how
to associate to it a continuous p-adic representation B(V) of GL2(Q,). If F is
a non-trivial finite extension of Q,, then a way of associating p-adic represen-
tations of GLy(F) to two-dimensional p-adic representations of Gal(Q,/F) is
yet to be found. Such is the case also for GL, (F') or other reductive groups
defined over Q,. One of the main tools in establishing the correspondence for
GL3(Q,) was the existence of GL3(Q,)-invariant norms in certain locally alge-
braic representations of GL2(Q,). We prove criteria for the existence of such
norms in certain locally algebraic representations of Us(F), where F' is a finite
extension of Q,. This provides new instances of the Breuil-Schneider conjecture
(generalized to quasi-split groups) about the existence of invariant norms on
certain locally algebraic representations of reductive groups.
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1. Introduction

1.1. p-adic local Langlands correspondence for GL2(Qp)

The classical local Langlands correspondence for GL,(Q),) is a bijection between
certain two-dimensional Weil-Deligne representations of the Weil group Wg, and
irreducible smooth representations of GL2(Q,).

In this correspondence, the topology of the coefficient field, C, plays no role. A
natural source of Weil-Deligne representations are Galois representations.

Thus, for [ # p, with any continuous representation p : I'g, = Gal(@p /Qp) —
GLy(Q,) one can associate a Weil-Deligne representation W D(p), and hence,
by the classical local Langlands correspondence, an irreducible smooth repre-
sentation ey, (p) of GL2(Q,) over Q;. Moreover, one can recover p from g, (p).
This completely fails for [ = p.

In the case [ = p, if C is a finite extension of Q,, and p : I'g, — GL2(C) is
potentially semistable, Fontaine showed that one can still attach a Weil-Deligne
representation to p, WD(p), and hence 7y, (p) still makes sense (see Breuil and
Schneider [6]). However, p ~ mgn,(p) is no longer reversible. In addition, p
admits Hodge-Tate weights, which correspond to an irreducible algebraic rep-
resentation my,(p) of GL2(Q)).

Still, one cannot reconstruct p from 7, (p) and ma4(p). In p-adic Hodge theory,
the potentially semistable p are classified by linear algebra data which includes
a certain Hodge filtration, which is lost in the process of constructing these
representations.

The p-adic local Langlands correspondence takes any continuous representation
p: Tg, = GL(C) and attaches to it a C-Banach space II(p) with a unitary
GL>(Q,)-action.

This map p ~ II(p) is reversible, and compatible with classical local Langlands
in the following sense: When p is potentially semistable, with distinct Hodge-
Tate weights,

I(p)* = Taig(P) ®c Tsm(p)
Furthermore, I1(p)®9 = 0 otherwise. Here V@9 are the locally algebraic vectors
in V, as will be defined in Definition 3.6.

When p is irreducible, II(p) is known to be topologically irreducible, and there-
fore the completion of 7,4 (p) @ Tem (p) relative to a suitable GL2(Q,)-invariant
norm, which corresponds to the lost Hodge filtration.

1.2. The Breuil-Schneider conjecture

Let F' be a finite extension of Q,, with residue field of cardinality ¢ = pf. The
p-adic local Langlands correspondence remains unknown for GLo(F').

Using the case of GLy(Q)) as a guiding principle, BS(p) := Taig(p) @c Tem(p)
can be defined for any potentially semi-stable representation
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p:Tp=Gal(Q,/F) = GL,(C)

with distinct Hodge-Tate weights, and the Breuil-Schneider conjecture is that
BS(p) admits a GL, (F)-invariant norm. The resulting completion with respect
to one of these norms should be closely related to the yet undefined II(p). Let
us state the exact formulation. Assume the Galois closure of F' is contained in

C.

Let D = (WD, HT;) e Hom(F,c) be data consisting of a Weil-Deligne representa-
tion WD, and tuples of integers HT; = {w1 ; < ... < Wy, } for each embedding
7 : F — C. This data suffices to construct a smooth C-representation 7, (D) of
GL, (F) via the classical local Langlands (up to some modifications - see Breuil
[5] for further details). For each 7, we let mq4, (D) be the irreducible algebraic
representation of GL,,(F) of highest weight (w, , — (n — 1),...,w1 ;) relative
to the upper-triangular Borel. Then let 7q14(D) = ®reHom(F,c)Talg,r (D), with
GL,(F) acting diagonally. We can then form BS(D) := 75, (D) Qc Taig(D).
Also, any p-adic potentially semistable representation p of Gal(@p/F ) on an
n-dimensional C-vector space, V', gives rise to a Weil-Deligne representation
W D(p) and tuples of integers HT,(p) for each embedding 7 : F' — C, as
follows. Let F’ be a finite Galois extension of F such that V' |Gal(@p/F,) is
semistable. Set _
D = (By ®q, V)" @/ @ o C

where Bg; is Fontaine’s semistable period ring, F(; is the maximal unramified
subfield in F’ and F, < C' is any embedding.

It is an n-dimensional C-vector space endowed with a nilpotent endomorphism
N coming from the one on By;. We define 7(w) on D by r(w) := ¢~ o
where w is any element in the Weil group of F, W is its image in Gal(F’'/F)
, d(w) € fZ is the unique integer such that the image of w in Gal(F,/F,) is
the d(w)-th power of the absolute arithmetic Frobenius, and ¢ is the semilinear
endomorphism coming from the action of Frobenius on By, (as ¢~ %") o @ is
F, @ C-linear, r(w) goes down to D). This gives WD(p). HT,(p) are just its
various Hodge-Tate weights.

Conjecture 1.1. (Breuil and Schneider [6]) There exists a p-adic n-dimensional
potentially semi-stable representation p of Gal(Q,/F) such that

D = (WD(p), HT:(p))~
if and only if BS(D) admits a GL,(F)-invariant norm.

The “if” part is completely known, and is due to Y. Hu (Hu [15]). The “only if”
part remains open.

Note that the existence of a G-equivariant norm is equivalent to the existence
of a separated lattice: Given a norm || - ||, the unit ball is a lattice. Conversely,
given a lattice A, its gauge ||z|| = qaw‘(x), where vp(2) = sup{v | € 7&A}

Thus we are looking for integral structures in BS(p).
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1.3. Other reductive groups and the case of G = Us(F)

While many attempts were made in order to find criteria for the existence of
integral structures in representations of GLo(F'), where F is a finite extension
of Qp, and towards the proof of the Breuil-Schneider conjecture, which concerns
the case of GL,(F), very little is known about the correspondence for other
reductive groups.

In fact, only in (Grofe-Klonne [14]) arbitrary split reductive groups were treated
for the first time. However, we are not familiar with any work done concerning
non-split reductive groups, and the unitary group in particular.

In such cases, it is still possible to consider the locally algebraic representations
of G = Us(F) over a p-adic field C, and ask whether they admit a G-invariant
norm.

One of the reasons for choosing Us(F') over Us(F'), for example, is the possibility
to learn from it new insights that will help us better understand the case of
GL3(F). Even though the case of Uy(F) = U(1,1)(F) seems simpler, and
maybe close to the case of SLs(F'), we have not explored this case, and are not
aware of efforts made in this direction.

In the case of GL,,(F'), Hu (in Hu [15]) shows that the requirement, in the Breuil-
Schneider conjecture, that there exists such a p-adic n-dimensional potentially
semi-stable Galois representation p, is equivalent to a condition formulated by
Emerton (in Emerton et al. [11]), stated purely in terms of the reductive group.
Explicitly, let G be a reductive group, and let P be a parabolic subgroup of G
with unipotent radical N and Levi component M. Let Ny be some compact
open subgroup of N, and let Z); be the center of M. Write Z]J\} ={z € Zy |
2zNpz~! C Ny}. Let § denote the modulus character of P, which is trivial on
N, hence induces a character on M = P/N, denoted also by 6. Concretely,
§(m) = [mNom~™! : Ny]. Let Jp(V) denote Emerton’s Jacquet module (with
respect to P) of a representation V. If V = w44 ® 7, we have

Jp(V) = ﬂ'ﬁg Q¢ (resSmgm )N/

We then have the following Lemma in Emerton et al. [11].

Lemma 1.2. Let x be a locally algebraic C-valued character of Zys. If the
x-eigenspace of Jp(V') is nonzero, and V' admits a G-invariant norm, then

Ix(2)67(z)| <1 Vze Zy;

This criterion is equivalent, in the case of GL, (F), to the existence of p. As
this criterion is formulated purely in terms of the reductive group G, it gives
rise to a generalization of the Breuil-Schneider conjecture to arbitrary reductive
groups.

Conjecture 1.3. Assume that for any locally algebraic character x : Zyy — C*
such that Jp(V'), # 0, one has

‘X(z)é_l(z)’ <1 VzeZj,
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and that the central character of V' is unitary. Then V admits a G-invariant
norm.

1.4. Progress on the Breuil Schneider conjecture

e Note that the central character of BS(p) always attains values in Of.
Sorensen (Sorensen [25]) has proved for any connected reductive group G
defined over Q,, that if 7,4 is an irreducible algebraic representation of
G(Qyp), and 7, is an essentially discrete series representation of G(Q,),
both defined over C, then 7,y ®c sm admits a G(Qy)-invariant norm if
and only if its central character is unitary.

e Recently there has been spectacular progress on the BS conjecture for
GL,(F) in the principal series case, which is the deepest, by joint work
of Caraiani, Emerton, Gee, Geraghty, Paskunas and Shin (Caraiani et al.
[8]). Using global methods, they construct a candidate II for a p-adic
local Langlands correspondence for GL,(F') and are able to say enough
about it to prove new cases of the conjecture. Their conclusion is even
somewhat stronger than the existence of a norm on BS(p), in that it
asserts admissibility.

Both works employ the usage of global methods, and as this is a question of local
nature, one hopes to find some local method to recover these results. There has
also been some progress employing local methods, which yields results also for
finite extensions of Q,, namely:

e For GLy(F), Vigneras (Vignéras [29]) constructed an integral structure
in tamely ramified smooth principal series representations, satisfying the
assumption that they arise from p-adic potentially semistable Galois rep-
resentations.

e For GLy(F'), following the methods of Breuil over Q,, de Ieso (De Ieso [9])
used compact induction together with the action of the spherical Hecke
algebra to produce a separated lattice in BS(p) where BS(p) is an unram-
ified locally algebraic principal series representation, under some technical
p-smallness condition on the weight.

e For GLy(F), in a joint work with Kazhdan and de Shalit (Assaf et al.
[3]), we have used p-adic Fourier theory for the Kirillov model to get
integral structures if BS(p) is a tamely ramified smooth principal series or
an unramified locally algebraic principal series, satisfying the assumption
that they arise from p-adic potentially semistable Galois representations.

e It is possible to generalize the assertions of the Breuil-Schneider conjec-
ture to arbitrary split reductive groups. The conjecture then asserts the
existence of a G-invariant norm when certain conditions, which can be
expressed purely in terms of the reductive group, G, are met. For general
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split reductive groups, Grofe-Klonne (Grofte-Klénne [14]) looked at the
universal module for the spherical Hecke algebra, and was able to show
some instances of this generalization for unramified principal series, again
under some p-smallness condition on the Coxeter number (when F' = Q,)
plus other technical assumptions.

We will employ all of the above methods in our present paper.

1.5. Our work

Let p be a prime number. We fix an algebraic closure @p of Qp, a finite ex-
tension F' of Q, and a quadratic extension E of F, both in @p. We choose
a finite extension C' of Q,, which will serve as the field of coefficients for our
representations. We assume that C' contains the normal closure of E/Q,, so
that

[Hom(E,C)| = [E: Q).

Let V be a 3 dimensional vector space over E. Let o € Gal(E/F) be the
nontrivial involution. We shall often denote T = o(z) for = € E.

We shall denote by E' the norm one elements in F, i.e.

E'=U(F)={r € E |27 =1}.

Denote by 6 the Hermitian form on V represented by the matrix

= o O
o = O
o O =

with respect to the standard basis, which we will denote by [_1, g, ;. Explicitly
(u,v) = ‘Tou

Let G = Us(F) = U(A) = {g € GLs(E) | 'glg = 6} be the unitary group in
three variables over F'.

Let B be its Borel subgroup of upper triangular matrices, and let

t
M=<m;s:= S |te EX,sc E' } ~E* x E!
1

)

t

be the maximal torus of diagonal matrices contained in it. Let x : E* — C*and
x1 : E' — C* be smooth characters, and define yas(ms) = x(t)x1(s). We
denote by xp : B — C* its inflation to B, and write also xp = x ® x1. Denote

¢ _f. Uy open s.t. f(bgk) = x5(b)f(9)
I”dB(XB)_{f‘G_)m VgeG, beB, kel

with the group G acting by right translations, namely (gf)(z) = f(zg) for all
7,9 € G and f € Ind§(xB).
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For any 7 € Homg4(E,C), let dr, 0 < a;, b, be integers. Denote a = (a,),b =
(br),d = (d,) € ZHomaa(B:C) "and let pyp.a be the irreducible algebraic repre-

sentation associated to them by subsection 3.1.
Let m = Ind%(x®x1) ® pap.a- We shall show that any locally algebraic principal
series C-representation is of this form, hence we are interested in the existence
of G-invariant norms on these representations.

We restrict ourselves to two cases: either y, x1 are unramified and the algebraic
weights a, b are small, or x, x1 are tamely ramified and there is no algebraic part
(the representation is smooth), and give a necessary and sufficient criterion in
these cases for the existence of a G-invariant norm.

For the smooth case (¢ = b = 0), we shall employ the method of coefficient
systems on the Bruhat-Tits tree of Us, introduced by Vigneras in (Vignéras
[29]), while for the unramified locally algebraic case, we will employ the methods
introduced in (De Ieso [9]) and in (Grofe-Klonne [14]).

In section 2, we recall some basic properties of the group G = Us3(F') and we
review briefly the construction and properties of the Bruhat-Tits tree associated
to it.

In section 3, we classify locally algebraic representations of GG, and introduce
stable OcG-modules which we conjecture to be integral structures in such rep-
resentations. Here we show the connection between compact induction and the
principal series representations in terms of the spherical Hecke algebra.

In Section 4, we focus on unramified locally algebraic principal series represen-
tations, and prove the first of our main theorems - a necessary and sufficient
criterion for such a representation to admit a G-invariant norm.

In Section 5, we introduce the concept of G-equivariant coefficient systems on
the tree, and show that they are equivalent to “diagrams” - fundamental systems
in the tree which suffice to describe the entire coefficient system (see Definition
5.8) . We further show the intimate connection between induced representations
of G, and G-equivariant coeflicient systems on the tree.

In Section 6, we give a local criterion for integrality of the 0-th homology of
certain coefficient systems, as a representation of G. We further refine the cri-
terion, and use the result of Schneider and Stuhler (Schneider and Stuhler [21]),
to show that any irreducible locally algebraic representation can be attained as
the 0-th homology of some coeflicient system on the tree.

In Section 7, we focus our attention on the case of smooth tamely ramified
principal series representations, and prove the second of our main theorems - a
necessary and sufficient criterion for such a representation to admit a G-invariant
norm.

In Section 8, we briefly discuss the relevance of these results to representations
over a finite field of characteristic p (mod p representations).

1.6. Notations
Let p > 2 be an odd prime number. We fix an algebraic closure @p of Qp, a
finite extension, ', of Q,, contained in @Iﬂ and a quadratic extension, E, of F,
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contained in Q,,. We choose a finite extension, C, of Q,, which will serve as the
field of coefficients for our representations. We choose it such that it satisfies
the following condition:

|H0malg(Ea C) = [E : Qp]

For any field K (which could be either F, E or C), we denote by O its ring of
integers, by px its maximal ideal, by 7 a uniformizer of Ok, by kg its residue
field, and by g its cardinality.

For any field K admitting an automorphism o of order 2 (here K will be either
Eorkg),denote K- ={r € K |o(zx) = —a}and K! = {r € K | z-0(z) = 1}.
We let ¢ = gg = p’, and denote by e the ramification index of E over Q,, so that
ef = [E: Qp]. The p-adic valuation valg on Q,, is normalized by valg(rg) = 1,
and we set |z| = ¢5" """ for z € Q,. We also let 7 = . Thus || = ¢~ '
Let Vy = O%, and let [_1,lp,l; be the standard basis. Let V = Vy ®p, E be its
scalar extension to a vector space over F.

Let o € Gal(E/F) be the nontrivial involution. We shall often write T = o(x)
forz € F.

Denote by 6 the Hermitian form on Vj repersented by the matrix

= o O
o = O
o O =

with respect to [_1,lg, ;. Explicitly

(u,v) = Thu, 6=

_= o O
o = O

1
0
0

Let G = Uz = U(H) be the unitary group scheme over Op. Thus, for any
Op-algebra A

G(A) = Us(A) = {g € GL3(0Op ®o, A) | gbg = 6}

is all the invertible linear transformations on Vy ®, A which preserve 6.
Denote by B = MN the Borel subgroup of upper triangular matrices in G,
where M is the maximal torus of diagonal matrices contained in it, and N is its
unipotent radical.

Denote G = G(F), let Ko = GL3(Og) NG, and let B = B(F), M = M(F),
N = N(F). Then

t 0

M={ms=|0 s 0 |tce EX,s€ B' } ~ EX x E*
0 0 ¢

Let x : EX — (C*and x; : B! — C* be smooth characters, and define

Xy (mes) = x(t)x1(s). We denote by xp : B — C* its inflation to B, and
write also xp = x ® x1-
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Denote

G _ .. Uy open s.t. f(bgk) = x5(b)f(9)
I”dB(XB)_{f'G_>0| YgeG, beB, kel

with the group G acting by right translations, namely (gf)(z) = f(zg) for all
7,9 € G and f € Ind$(xB).

We also denote

0 0 1 b 0 0 0 0 n!
s=( 01 0], a= 0 1 0|, B=as= 0 1 O
1 00 0 0 7 T 0 0

Remark 1.4. Although we have s = 6, the symbol s is used when referring to
an element of GL3(E), whilef is used when referring to the hermitian form.

For any vector space W over C and any nonnegative integer n, we denote by
T(W) its tensor algebra, by SymW = T(W)/(v@w—wev|v,weW) the symmetric
algebra over W, and by Sym"W the n-th graded piece of SymW  which is the
n-th symmetric power of W. We denote by W* the dual vector space.

We shall write x ---x, for the representative of z; ® ... ® &, € T(W) in
Sym"W.

For nonnegative integers a, b, we denote S(a,b) = Sym®C?® @ Sym®(C?)*. Then
for any a,b > 1, there is a natural contraction map ¢4 : S(a,b) = S(a—1,b—1),
defined by

a b
La7b(x1xa®y1yb)zzz<x“y‘]>(xljjlxa®y1gjyb)
i=1 j=1

We denote by p(a,b) = ker(tq ). For completeness, if ab = 0, we denote p(a, b) =
S(a,b) be the entire space.

The space S(a,b), as well as its subspace p(a, ), admit natural actions of G.

In fact, for any d € Z, this action can be twisted by det?, to obtain a represen-
tation which we denote by p(a,b,d).

The action will be described explicitly in subsection 2.3. These spaces will be
used to describe the irreducible rational representations of G.

We also fix an embedding ¢ : E — C, and denote other embeddings by 7 : E <
C.

1.7. Main Theorems

Theorem 1.5. Let x : E*X — C* be an unramified character. For any T €
Homag(E,C), let dr, 0 < ar,b; < p be integers, leta=>"_a; b= b, and
denote

p: ® pTa pT :p(a’77b7—7d7) ®E77—C
TEHoma14(E,C)

where p(ar,br,d;) is as above. Then the following are equivalent:
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1. w9ty (m)~Y,  @?rn%Tox(n) € Oc¢ (equivalently |7r7“7b| < Ix(m)| < g7 27 27?))
2. Ind%(x) ® p admits a G-invariant norm.

Theorem 1.6. Let y : EX — C* , x1 : E' — C* be tamely ramified charac-
ters. Then the following are equivalent:

L x(m)~',  ¢*x(m) € Oc (equivalently 1 < |x(m)| < |g~2|)
2. Ind$(x ® x1) admits a G-invariant norm.

Remark 1.7. Simple calculation shows that both theorems are in fact special
cases of Conjecture 1.3, specialized to the group G = Us(F). This follows from

the fact that the action of the non-trivial element in the Weyl group of G, w,

on a character y is given by x¥ = ¢?x .

2. The group Us(F)

It has been brought to our attention that some of the material for this section
can also be found in Abdellatif [1], which even presents some generalizations for
the case of quasi-split group of rank one, and in Koziol and Xu [19].

2.1. The Bruhat-Tits tree of Us

In (Abramenko and Nebe [2]) it is proved that the Bruhat-Tits tree of G = U3 (F)
can be obtained by considering the action of G on the Bruhat-Tits building of
GL3(E).

Let X be the Bruhat-Tits building of GL3(FE). It is a simplicial complex, which

may be describes as follows. (We follow the descriptions given in Abramenko
and Nebe [2], Garrett [13]).

Let V' be a 3-dimensional vector space over E. Let m be a uniformizer of Op.

Definition 2.1. Let V be a vector space over E. A lattice in V is a finitely
generated Og-module spanning V over E.

We define an equivalence relation on the set of lattices in V' as follows.

Definition 2.2. Two lattices L, L’ lie in the same dilation class if there exists
a A € E* such that L' = \L.

Then the vertices of X' consist of dilation classes [L] of lattices L C V. The
edges of X' consist of pairs {[Lg], [L1]} where Ly 2 Ly 2 wLo.

The 2-cells of X' consist of triples {[Lo], [L1], [L2]} where Lo 2 Ly 2 Lo 2 wlo.
The group GL3(F) acts on the left on X, by g[L] = [¢L] for any g € GL3(F).
Equivalently, we may define

Definition 2.3. A chain of lattices in V, ... C L; C L;y; C ... is called

admissible if the set {L;};cz is closed under multiplication by integral powers
of m.
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Then X is the partially ordered (by inclusion) set of all admissible chains of
lattices. (see Abramenko and Nebe [2], 3.3).

Let V = E3 andlet {I_1,lo, 1} be the standard basis. Let (-, -) be the Hermitian
form on V defined by

0 0 1
(w,)=%-[ 0 1 0 | -u YuoeV
1 0 0

Let Lo = Ogl_1+Oglo+Ogly. Given a lattice L = gL, we see that det(7*g) =
3% det(g), hence valp(det(7*g)) = 3k+wvalg(det g). It follows that for any class
[L], there exists a lattice L = gLy with valg(detg) € {0,1,2}. Thus we may
associate a number (or type) to each vertex.

Definition 2.4. Let v = [L] be a vertex of X. Let g € GL3(E) such that
L = gLy, then the type of v is valg(det g) mod 3.

Lemma 2.5. The hermitian form (-,-) induces a non-type-preserving automor-
phism o of X, of order 2, by setting

F={veV |l ecOg Viel}, o(L]) =LY
Proof. If [L'] = [L], there exists some A € E* such that L' = AL, hence
(L ={weV|wl)eOp VieltY={veV|(wN)eOg VieL}=
—{weV|(wl)eOp VieL}=x L

showing that [(L/ )ﬁ} = [LF], hence o is well defined. Furthermore, we have

(Lﬁ)u ={weV|wleOg VIl e} =1L
showing that o2 = 1. O

Remark 2.6. Note that if L = gLg for some g € GL3(E), and Lf = gL for
some g € GL3(E), we have

g e GLy(Op)

hence
det(g*) - det(g) € OF = valg(det(g*)) = —valp(det(g))

showing that vertices of type 0 are fixed by o, while vertices of types 1,2 are
paired by o.

This allows us to assign types also for orbits of ¢ - fixed points will be of type
0, and orbits of length two will be of type 1.

This involution induces also a map on chains of lattices, defined by

L=..CLCLC..., L=...CLt CLicC..
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Definition 2.7. An admissible chain of lattices £ is called #-admissible if
L* = L.

This suggests the following result.

Proposition 2.8. (Abramenko and Nebe [2], §8) The Bruhat-Tits tree, T, of
Us(F) is the partially ordered set (by inclusion) of #-admissible chains of lat-
tices.

For example, in the standard chamber of X'| consisting of
1 0 O 1 0 0

Vo — [L()],’Ul = [Ll} = 0 1 0 L() , UV = [LQ} = 0 = 0 LQ
0 0 « 0 0 =«

the admissible chain of lattices ... C 7Log C Lo C 7w 1Ly C ... representing vg
is also #-admissible, since (7%Lg)? = 77 L.

However, the admissible chains of lattices ... C 7Ly C L; C 7 'Ly C ..., and
...CmLy C Ly C 7 'Ly C ... representing v, vs are not #-admissible since
L =7 1L,

Instead, one sees that the admissible chain of lattices ... C wly C Ly C Ly C
7 1Ly C 1Ly C ... representing the edge (v, vy) is #-admissible.

This shows that the edge (v1,v2) in X will contract to a single vertex in T.
More generally, there are two types of minimal #-admissible chains of lattices,
which correspond to the vertices of the tree T -

Either L;; = wL; and Lg = L;, in which case this is just an original vertex of
X, or there exists ¢ such that Lg 1 = Li, in which case it is the contraction of
an edge of X.

The edges of T are the contracted simplices of X - triangles contracted along
one edge.

Let Tk denote the k-simplices of T, so that 7Ty are the vertices, and 7; are the
edges. Let 71 denote the oriented edges.

Definition 2.9. If L is a lattice satisfying L C L# C 7L, we say that L is a
standard lattice.

Remark 2.10. We may identify the vertices of the tree 7 with the standard
lattices, where each represents an equivalence classes (under # and homothety)
of lattices.

We then have two types of vertices - the vertices represented by standard lattices
with Lf = L, and the vertices represented by standard lattices L# O L D 7L

Let
To={veTlv=I[L], L=L%, T={veT|v=/(L],[Lf]), L#L}

We call 7 vertices of type 0, and T, vertices of type 1.

100



Two such vertices, Lo = Lg, and Lﬁ >Ly D ﬂ'Lﬁ are connected with an edge if
Lf D LoD L.

We have also the following description of the apartments in 7.

Proposition 2.11. (Abramenko and Nebe [2], §6) The apartments of T corre-
spond to hyperbolic frames, i.e. pairs of lines Evi, Eva C V such that (vq,vs) #
0, (v1,v1) = (va,v2) = 0. The corresponding apartment consists of all classes of
lattices that admit a basis contained in {vy,vs} U (vy,v5)"

Definition 2.12. We set vg = [Lg] where Ly = Ogl_1 + Ogly + Ogly, and
vy = [L1] where

Li=0g- 114+ 0 -lo+70g-l; = - Lo

S O =
o = O
N O O

Then
LgZW_IOE'Zfl-i-OE'lo-i-OE'llDLoDLl Dﬂ'Lg

so that Lg, L; are standard lattices, with vy € T, v1 € Ty, and eg; = (vg,v1) €
Ty is an edge.

Then eg; will be called the standard chamber in the apartment corresponding
to the pair El_q, El;, which we will refer to as the standard apartment.

By (Abramenko and Nebe [2], Lemma 17), we see that G acts transitively on
the set of chambers in 7. Further, for any g € G, we see that

‘G0g = 0 = Nmy, p(det g) = det(g) - det(g) =1, 0=

= o O
o = O
O O =

hence valg(det g) = 0, showing that G preserves types.
It then follows that

Corollary 2.13. For any edge (ug,u1) € T, withug € Ty of type 0 and uy € Ty
of type 1, there exists g € G such that ug = gvy and u; = gvy.

2.2. Structure of Us
We denote by Ky the stabilizer in G of vy, and by K7 the stabilizer in G of vy;
the intersection I = Ky N K7 is the stabilizer in G of eg1 = (vg, v1).

By construction (see Tits [27]), the groups Ky, K are representatives of the two
conjugacy classes of maximal compact open subgroups of G.

Since G preserves types, the stabilizer of an edge is the same as the stabilizer
of an oriented edge.

Since the action of G on T is transitive on each type of vertices, we note that
the vertices of type ¢ € {0,1} are in bijection with left cosets G/Kj.

101



Proposition 2.14. Representing the elements of G in the basis l_1,1g,1l1, we
have

Or Of 7T_10E

KOZGLg(OE)ﬁG, K, = pe Opg Og NG
PE  PE Og
O O Og
KonKy=1= PE Or Og NG
pe pe Op

Proof. Let g € Ky. Recall that Lo = Ogl_1 + Oglp + Ogli. Then, as [gLg] =
[Lo|, and det(g) € Oy, we must have gLy = Lo, whence gl_1,gly,gli € Ly =
Ogl_1 + Ogly + Ogly.

It follows that g € M3(Og). Since g € G C GL3(E) and g~'Ly = Lo, by
symmetry we see that g € GL3(Og)NG. Conversely, if g € GL3(Og) NG, then
clearly gl_1, glo, gl1 € Lo , showing that gLg C Lo, and as g € GL3(Og), we see
that g7! € GL3(Og) NG, hence g~'Ly C Ly, so Lo C gLg, showing equality.
Therefore Ky = GL3(Og) NG.

Next, let g € K. Since [gL1] = [L1] and det(g) € O, we must have gL = Ly
and furthermore ng = Lg.

1 0 0 =~ 0 0
AsLi=| 0 1 0 |-Lo, we see that L} = 0 1 0 |-Lg, and, with
0 0 « 0 0 1
the obvious definitions of g_1, g1,
1 0 O 1 0 O
glo=| 0 1 0 gl 0 1 0 |Lo=1Lg
0 0 w1 0 0 =«
™ 0 0 =~ 0 0
g_1Lg = 0 1 0|y 0 1 0 |Ly=0Lgy
0 0 1 0 0 1
showing that ¢1,9_1 € Ky, whence
1 0 O 1 0 O =~ 0 0 = 0 0
g€ 01 0 |]Kgl O 1 0 N 0 1 0 |Ky|l O 1 0 |=
0 0 w 0 0 71! 0 0 1 0 0 1
Or Og ﬂiloE Ogr 7T710E 7T710E
= Or Og 7T710E N PE Og Og NG =
PE  PE Ok bE Og Ok

Or Og WilOE
= e Og Og NG
PE  PE Og
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Or Og 7T_10E

Conversely, if g € e Op Or N G, then g1, g_1, defined as above,
PE  PE Og

satisfy g1,9-1 € Ko,

hence g1 Lo = Lo, g—1Lo = Lo, showing that gL; = L and gL} = L% O

The following proposition is a special case of (Tits [27], 3.3.3). It follows from
the fact that K; acts transitively on the vertices at distance 2n from v;.

b 0 0
Proposition 2.15. (Cartan decomposition) If we denote o« = 0o 1 0],
0 0 7

and let i € {0,1} then
G = H Kia_”Ki.

nGZEO

The following proposition is a special case of (Tits [27], 3.3.1), but since our
case is much simpler, we prove it directly.

Proposition 2.16. (Twahori decomposition) We have

Ko=1[]1sI, Ky=I]]I8I

where
0 0 1 0 0 7t
s = 01 0|, B=as= 01 0
1 0 0 T 0 0

Proof. If E/F is unramified, consider the natural reduction map py : Ko =
GL3(0Og) NG — G(kp) defined by reducing the entries modulo w. Then
I= po_l(B(kp)) is the preimage of the parabolic subgroup of upper triangular
matrices over the residue field, and considering the Bruhat decomposition over
the residue field, we see that

G(kr) = B(kp) [ [ B(kr)sB(kr)
Taking preimages under pgy, we see that

Ko =GL3(0p) NG = p; (G(kr)) = T[] IsI

For K, we consider the group

b
H(kp) = 0 | |cekp, adbecky, det+db=1p <G(kp)
&

QO e
oo O

where k = {z € kg |z +T =0} and k, = {x € kg |z -T=1}.
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Consider the natural reduction map p; : K1 — H(kg) defined by

a b 7w lc a 0 ¢
p1| md e f = 0 e O mod 7
g Th 1 g 0 1

Then I = p; (By(kr)) where By (kr) € H(kp) is the parabolic subgroup
of lower triangular matrices in H. Considering the Bruhat decomposition of
H(kp) we see that

H(kp) = By (kp) [ [ Bu(kr)sBu(kr)
Taking preimages under p;, we see that
Ky =py (H(kp)) = I[ Ipy ()T = T[] 181

If F/F is ramified, we consider similarly the natural reductions py : Ky —
O;3(kr) and p; : K1 — H'(kp), where

Os(kr) = {g € GLs(kr) | ‘90 = 0}

and
a 0 b
H' (kp) = 0 +1 0 |ad —bc=1p < Os(kp)
c 0 d

Letting B/(kp) < Og(kr) and B’ (kr) < H'(kr) be the parabolic subgroups
of upper and lower triangular matrices, respectively, over the residue field, we
may consider the Bruhat decompositions of Og(kr) and H'(kr) to obtain

Os(kp) = B'(kp) [ [ B/ (kr)sB'(kr), H'(kp) =By (k) [ [ Bl (kr)sBy (kr)

Again, I = p5'(B/(kp)) = p7 (B (kr)) so taking preimages we obtain the
required result. O

The geometric meaning is that the stabilizer of an edge e = (o(e),t(e)) € T1
acts transitively on the remaining edges starting at o(e).

Let N be the unipotent radical of G. Then N = N(F) is given by

1 b =z B
N={np,:=| 0 1 —b ||bz€E, z+z+bb=0
0 0 1
The following is a consequence of (Tits [27] 1.15 and 3.5, see also Bruhat and

Tits [7] 4.4), but as in this specific case, it is much simpler, we provide a straight-
forward proof.
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Lemma 2.17. (Iwasawa decomposition) One has G = BKy = BK;.

Proof. First note, by the Bruhat decomposition, that G = B[ BsN, hence it
is enough to show that for any n € N, sn € BKy N BKj.

Let n=mnp . € N. If z € O, then bb=—2—-2€ OgNF = Op, hence b € OF.
In that case, note that

0 0 1 = 0 0 0 0 7!
sn=|0 1 —=b | = 01 0 0 1 -b € BK1 N Ky
1 b =z 0 0 7! T W Tz
Else, we have 27! € pp and as bb = —z — %, also 2~ 'b, 2~ 'b € pg. In this case,
we note that
0 0 1 z7boz7hh 1 1 0 0
sn=| 01 —-b | = 0 1 b || 27 —-z"'z2 0 | € BKynBK;
1 b =z 0 0 z 271 2 1

O

For later use, we shall need a decomposition of G to left cosets of K. For that
we introduce some notation.

Let No = N(Op) ={np. € N | b,z € Og}, and for any r € N,
Nop={mp, e N|ben" O, =z¢€ ﬂQTOE}

and
Nopy ={np. € N|be " Op,z € '0g}.

Further, for any » € N, denote N, = sN,.s for the filtration on the opposite
unipotent radical. We then have

Proposition 2.18. For any n > 0, let R, be a system of representatives for
No/Nay, and forn > 1 let R,, be a system of representatives for N1/Nay,. Then

G = H na~ " Ky H H nBa~" Ky

NER, >0 NERn+1,n>0
where
= 0 0 0 0 7!
a= 0 1 0], B=as=| 0 1 0
0 0 7 7T 0 0

Proof. We have a Cartan decomposition G = [[,,~, Koa " Ko and a Iwahori
decomposition Ky = I[[IsI. Let e be an edge in 7T, say connecting ug to
u1. Then there exists a unique edge e’ in the standard apartment of 7 such
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that the couple (eg1,e) is G-equivalent to (eg1,€’). Since eg; is fixed, they are
I-equivalent. More generally, we denote the vertices in the standard apartment
by (vn)nez, and let e;; = (v;,v;) for any 4, j such that |i — j| = 1.

It follows that the edges {ean. 2n+1, €2n+2,2n+1 tnez form a set of representatives
for I\T1 = I\G/I. Moreover, egpon+1 = &"ep1 and egpio2n+1 = Q€21 =
aPBeg 1. It follows that a set of representatives for the double cosets I\G/I is
given by {a™, Ba" }pez.

As o™ Ky = Ba~" K, we see that in the decomposition

G=|]]1oK | IT | [] 1Be Ko

n>0 n>0

the RHS indeed covers G. To see that the union is disjoint, note that Ta=" K/ Ky
corresponds by action of I on a~"vg to vertices at distance 2n from vy, which
are also at distance 2n + 1 from v; (i.e. the geodesic from vy to them does not
pass through v1). However, we know that the stabilizer of a ™ "vg is a " Kpa™.
It follows that these vertices correspond bijectively to cosets I/1 Na " Kya™.
Similarly, I8a~"Ky/Ky corresponds by action of I on Sa™"vg to vertices at
distance 2(n + 1) from vy, which are also at distance 2n 4+ 1 from vy (i.e. the
geodesic from vy to them passes through v1). However, we know that the sta-
bilizer of Ba vy is Ba " Kya™B~!. It follows that these vertices correspond
bijectively to cosets I/ N Ba~"Koa"B37L.

Computation shows that

OE WnOE 7'('2”0]3
a "Kopa" NI = 7Ogp Or ™ Og NG
7TOE 7TOE OE

Ok Og Og

Ba "Koa"BTINT = 7"t Og Or O | NG
772"+2OE 7Tn+1OE OE

hence, the natural quotient maps Ng < I, N; — I induce isomorphisms
I/ainK(]anﬁI ~ NU/NQTL, I/BainKoanﬁilﬂI ~ Nl/ﬁ2n+2
Consequently, the proposition follows. O

By the proof above, we see that in fact, considering only vertices of distance 2
from vg, we get the following corollary:

Corollary 2.19. Let Ri, Ry be as above. Then

Koo ' Ko = 1o Ko [ 18Ko = | T ne ‘&0 | [T | T n8Ko

neR neﬁl
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We also introduce a definition of “spheres” around the vertex vy.

Definition 2.20. For any 0 < n € Z, we let

52 =Ila""Ky= H na~ " Ky, 5711+1 =I8a " "Ky = H nBa"" Ky
neR, NER 41

Let Sop = S§, and for any n € N, let S, = SO[[S} = Koa "Kjy. Further,
denote B,, = [, S.
Remark 2.21. We note that S, /K, corresponds to the collection of vertices of

distance 2n from vy, and that B, /K{ corresponds to the collection of all vertices
of type 0 of distance at most 2n from vg.

2.3. Filtrations on the stabilizers
We will define certain decreasing filtrations on the stabilizers defined above -
I, Ky and K7, by normal subgroups which are compact open in G.

We follow the construction described in (Schneider and Stuhler [21]), of filtra-
tions on the stablilizers, and specialize it to our case, with G = U;(F).

It follows that we may define for each e > 1 the subgroups

1+ 7¢Og 7T671(9E WeiloE

I(e): Og 14+ 7¢O 76710]5 NG
Og Og 1+ 7¢O0fg
1+ 7¢O mOFg 7°Og
K()(e) = Og 1+7¢Ofg O NG
O mOg 1+ 7¢Ofg
1+ 7¢O 7'(6710]5‘ 7T671(9E
Ki(e) = 7¢OF 1+ 70 w°10g NG

7T€+1OE mOFg 1+ 7¢0g

which are normal in I, K, K1, respectively and compact open in G. In partic-
ular, we see that

Uy pe bE
Ko(1)=| pe U, pe |NG
pe pe Ug
UL, Op Op
M= pe UL 0p |NnG
pe pe Ug
and
UL Op Op
Kil)=| pe Ui Op |NG
Pz pe Ug
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where UL =1+ pg.

These filtrations play a role in the main theorem in (Schneider and Stuhler [21],
I1.3.1), which allows us to interpret a representation as the 0-th homology of a
coefficient system.

Remark 2.22. One could also define the filtration corresponding to a facet o by
letting Uée) be the stabilizer of all vertices which are at distance at most e from
.

In particular, for i = 0,1, K;(1) is the stabilizer of the star pointed at v; , and
I(1) is the stabilizer of all triangles containing eg; as an edge. However, we will
not use this description.

2.4. Lemmata on Finite fields

In what follows, p is a prime number, ¢ is a power of p, and I, is the unique
field containing ¢ elements.

G(F,) = U3(F,) is the unitary group in three variables over F,, i.e. U3(F,) =
{9 € GL3(F2) | 'gsg = s}, and Fo={z€Fp|z+27=0}

We further let B(F,) be the Borel subgroup of upper triangular matrices, and
N(F,) its unipotent radical. As before, we see that

1 b =z
N(Fq) = 9§ ",z = 0 1 -7 | b,Z c Fq27 z+ 4 + bq+1 =0
0 0 1

In addition, we consider O3(F,) = {g € GL3(F,) | gsg = s}, and its unipotent
radical N’(F,), which is given by

1 b =z
NF)=mp.=| 0 1 —b ||bzeF, 2z+b>=0
00 1

Lemma 2.23. For any q, one has
IN(F)|=d’, [Fel=q [N'(F)l=q
Moreover, for any 0 # i € Fq_g s ]Fq_2 =F, -4, and if p= 2, then Fq} =F,.

Proof. Assume that p # 2, and let « € ]qu2 be a generator, then adt! ¢ Fy is
not a square in Fg, as %1 € 7Z and

q+1\ 91 21
o 2 = 2 = —1

so that o'z ¢ F,. Further, we have

( q+1)q a(a+1) a+1
o 2 = 2 = —Q 2
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so that, denoting i = a%, we see that : = —i. As i ¢ F,, {1,i} is a basis for

Fg2 over IFy, and for any b, z € F;2 we may write b = by + byi, 2z = 21 + 21, with
b1, b2, 21, 22 € Fy so that np , € N(F,) if and only if
b2 — 132

2
Note that 2 is invertible in Fy, so this makes sense. It follows, that given b, z; is
uniquely determined, and 25 can attain any value. It follows that [N(F,)| = ¢*
Fq} =q.
Similarly, as 2 is invertible in F,, N'(Fy) = {ny 422 | b € Fy} is in bijection
with Fy, hence |N'(F,)| = ¢.
If p = 2, we see that 29 = —z <= 29 = z, hence F;z = IFy, and we still have
Fy
for any b, z € F 2 we may write b = by +bacr, z = 21 + 200, with by, b2, 21, 22 € Fy
so that ny , € N(F,) if and only if

2z1 = —(b? — b%ZQ) — 21 = —

and

= |Fy| = ¢, and for some o € F2\Fy, {1, } is a basis for Fy2 over F,, and

_ DI 403ttt
B a+ ol
Since o ¢ F,, @ # a, hence o + a? # 0 is invertible, and z2 is uniquely well
defined for any b, bs. 21 is determined arbitrarily, hence again |N(F,)| = ¢>.
Also, N'(Fy) = {np» | b =0,z € F;} = {no,. | z € Fy} is again in bijection with
F,, hence |N'(F,)| = ¢. O

(4 ad) - zp = bF + b2a7T03 + bibo(a + a?) <= 2 + b1by

The following lemma is a consequence, which will be used in Section 7, in the
course of the proof of the main theorem.

Lemma 2.24. (a) Let 1 # n : IFqXQ — C be a character. Eztend it to Fp2 by
setting n(0) = 0. Then for any 0 £ i € IF;2 , one has

0 77[]1«‘;7&1
Do) =3 (a=n() nlg=1, p#2
€2 q—1 nlgx=1 p=2
and
0 77[]1«‘;#1
S ) = —qlg—=1n(i) nlp=1, p#2, n#l
ny,. EN(Fy) —q(¢—1) nlgx=1 p=2 n#1
q3—1 n=1

(b) Let p # 2 and letn : Ff — C be a character. Extend it to F, by setting

7n(0) = 0. Then
_ﬁ — 0 777£5qa1
b;xgqn< 2> {ﬂ(-%)'(q—l) n=eq1
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1 eF?
where ¢4 s the quadratic character on Fy defined by ¢,(z) = { 1 N ¢ Fg.
-1 =z
q

Proof. (a) If g [rx # 1, then there exists an a € F;¢ with n(a) # 1. However, for

any z € Fq} , one has az € Fq}, so that

don(z) =Y mlaz) =Y nlan(z) =nla) > n(z)

F~. F~. F~ F~.
zE 22 z€E 2 zE 2 zE 02

which shows that the sum vanishes.
If n [F; =1 and p # 2, then, as any z € IF;2 is of the form z = 25 - i (see Lemma
2.23) for z € F,, we see that 7(z) = n(i), hence

> (=) = (a—1)n(i)

e
zE 02

(recall that we have defined 7(0) = 0).
Ifn [qu =1 and p = 2, then as F o =Ty, we see that ZzGIF;Q n(z) = q— 1. This
settles the computation of the first sum.

Before we proceed, we note that for any z € Fj2 , as the norm map Fp2 — F, is
surjective, there exists b € F,2 such that bb = —(z + z).

Moreover, if z € ]Fq_z, it follows that b = 0 is the only possible value for b, and
F,

else, we have = q + 1 different solutions for this equation.

Now, recalling that we have extended 7 so that n(0) = 0, we see that

3 n(z)Z{O n#l

2 _ —
z€F 2 q 1 = 1
Therefore ZZ¢F;2 n(z) = fZZG]F;Q 7(z), when n # 1 is nontrivial. Thus we
have
Yoo =D nE) A+ @+ Y nz) =
np, - EN(Fy) z€F =¢F
0 n TF; #1
_)—ala=1n6@) nlg=1, p#2, n#l

—q(g—1) nlgx=1 p=2 n#l

¢’ -1 n=1
(b) Let a € FqQ\IE‘g a non-square. Then any z € F, is either of the form x = —%
orr =—o- % for some b. Moreover, for any x # 0 this is exactly a 2-to-one
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map, with +b giving =, and for x = 0, we have b = 0 in both forms, hence if

n#1

=2 = Ea(2) Eo( ) 0 emor £ )

z€F, beF, beF, belF,
If n # 4, then there exists such a with n(«) # —1 , hence the sum vanishes. [

Corollary 2.25. If E/F is unramified (so that ¢ = q% and f is even), then
T is bihomogeneous with degrees ¢*'% +1 and ¢*/? 4+ 1 for vertices of types 0,1
respectively. If E/F is ramified, then T is homogeneous of degree q + 1, where
q = qE 1s the cardinality of the residue field of E.

Proof. By the identification of vertices of the tree with (G/Ky) [[(G/K1), we
see that the vertices of each type have the same degree. We note that KoKy =
K HIOéilKl and K1 Ky = Ky HIﬂK@

Indeed, as each K; acts transitively on the neighbours of v;, it follows from the
Iwasawa decomposition (Corollary 2.19). We thus see that these decompositions
to left cosets of K7 and K{ correspond to the degrees of vy, vy, respectively.

In particular, as K1 Ko = Ko ] (Hneﬁl nﬂKo), we see that the degree of type
1 vertices, dy, is |R1| +1= |N1/N2{ + 1.

To obtain the result for type 0 vertices, we must decompose Ia 'K to left
cosets of K in a similar manner, and obtain that I/1na~'K,a~~o/n;, hence the
degree of type 0 vertices, dy, is |No/N1| + 1.

Assume first that E/F is unramified. In this case, we may take m € F, so that
7 = m. Here and in what follows, 7, , = sny_.s.

Consider first the homomorphism Ny — kg = {x € kg |  + 27" = 0} defined
by np,, — (7='2) mod 7. This is well defined, since for m, . € N1, 2z € 70,
whence 7'z € Op, and as z + Z + bb = 0, with bb € 72Op, we see that
n 24712 € nOp, so that (7~'2) mod 7 € kj. This is also a homomorphism
since

N,z * Ny = Nptc,y+z—be = (77 (y+2)) mod 7

as bc € w20 for all M,z Ne,y € N.. Further, , if My, € N, then 2 € m20g,
so that 7'z mod 7 = 0, showing that the map factors through Nj. As this is
precisely the kernel, we have an injective homomorphism N1/Ny — k.

This map is bijective - indeed, if a € kj;, choose a € Op such that a mod 7 =
Nm(a). Then the polynomial 2% +a € Op[z] C Og[z] has a root when reduced
mod 7, namely a. Therefore, by Hensel’s Lemma, it has also a root z € O
such that z mod 7 = a. It follows that 2 +Z = 0, hence z € E~ = {z € |
x+ T =0}. Now 7ig »» € N1 maps to a.

Now, by Lemma 2.23, |k | = qr = q'/?, showing that d; = ¢/ + 1.

For dy, consider the reduction map Ny — N(kg). It is a homomorphism with
kernel N1, hence Ny/N; ~ N(kg). As, by Lemma 2.23, |N(kp)| = ¢°/2, we see
that dy = ¢*/2 + 1.
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Next, consider the case when E/F is ramified.

We now have a homomorphism N; — kg = kp defined by np . (r=12)
mod 7. It is well defined, since for m;, . € N1, 2 € 7Og, hence 71z € Og.
It is also a homomorphism with kernel N3, by the same reasoning as in the
unramified case. Finally, if o € kg = kp, we may lift it to some z € F such
that 2 mod 7 = «, and then z = z. Choosing 7 such that 7?2 € F, we see that
T = —m, hence Tz = —7z, so that ng », € N1 maps to «, showing surjectivity.
It follows that dy = |kg|+1=¢+ 1.

For dy, consider the reduction map Ny — N'(FF,). It is a homomorphism with
kernel Ny, hence Ny/N; ~ N’(kp). As, by Lemma 2.23, [N'(kp)| = ¢, we see
that dy = q+ 1. O

3. Representations of Us(F)

3.1. Qp-algebraic representations of Us(F)

As before, let C' be a finite extension of Q, containing F, such that

|Homaig(E,C)| = [E : Q).

For 0 < a,b € Z, denote S(a,b) = Sym®C® @ Sym®(C3)*. If a,b > 1 one has a
natural contraction map tqp : S(a,b) = S(a—1,b— 1) defined by

a b
by (@1T2 - Ta @Y1y yp) = D (i yy) (T1@2- - Fie e Ta®Y1ya - Gy Yo)
i=1 j=1
Denote its kernel by V' (a,b). If ab =0, we let V(a,b) = S(a,b).

For 7 € Homgy(E,C), d; € Z and 0 < a,,b, € Z, we denote by p(a-,b,,d.)”
the irreducible algebraic representation of Us ®p , C of highest weight

Xr g = diag(z1, 22,77 1) = 7(21) "7 7(21)"7 - 7(det(g))

with respect to B.

We identify p(ar,b;,d,)” with a representation of G on the C-vector space
V(ar,b;), as follows.

By choosing a basis (2,1, 2,2,7,3) for (C3)*, and a dual basis (Y1, yr2,Yr.3)

for 2 = ((C®)*)*, we may identify Sym®C® with the space of homogeneous
polynomials of degree a in the z, ;, and similarly identify Symb(C3)* with the

space of homogeneous polynomials of degree b in the y .

Under this identification, S(a,, b;) is identified with the space of (a, b, )-bihomogeneous
polynomials in the x, j, y, . Explicitly,

S(ar,br) = @ C-alyl

i,j€L,

lil=ar,|j]=br
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where 2 = (2,1, 7,2, 27.3); Yr = (Yr,1,Yr,2,Yr,3), @ = (i1, 42,43), 5 = (j1, 2, J3)
are such that |i] = i1 + iz +23 f aT, |7l = j1 + j2 + js = b, and we denote

x _m’rlx‘rQ‘r‘rdandy _yleTZyTB

As (Trk, Yr1) = Ok, the map ¢, now takes the following form

tad) — —
Las,by (xTyT) = la, by (1'7_ 1‘/'ET 2.’1},’_3 ® yT 1y‘r 2y7— 3) -

3 3 Ji
“SY ) (e5h-at @ ust 4l =
s=1

k=11=1 r=1s=

3
= szjk:c;}cy;,lc Ty = <Z 0%+ 1,0y k) (ar41)

k=1

ik

Therefore, we have

V(ar,b;) = {f(“fﬁyf) € S(ar,b ‘Z Ox kay k _O}

This is the space of bihomogeneous polynomials of bidegree (a.,b,) with coef-
ficients in C satisfying a certain differential equation. G acts on it as follows

Any 7 : E — C induces an embedding, which we denote by the same letter
7:GL3(E) — GL3(C), as there is no risk of confusion.

GL3(C) acts on C? naturally, hence for any 7 we obtain a natural G = U3(F) C
GL3(F) action, which we denote by (g,v) — 7(g) - v.

This action also induces a natural right action on (C3)*, namely (v*-7(g))(v) =
v*(7(g) - v) for any v € (C?)*, v € C3.

Therefore it induces an action on S(a,,b,) defined by
(g : f)(x‘ra yT) = T(det(g))d" . f(;y‘r . T(g),T(g)’l . y‘r)

Note that ¢, . commutes with this action of G. Indeed, writing for simplicity
g for 7(g), and z,y,a,b,d for x,y,,a,,b;,d,; we obtain

tap(g - f)(x,y) Za 9.1) )ZZa(a(g'f»(%y):

813kayk
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But Y5_, (¢~ )ikgkj = 01, by definition, so that

3

ta(g - f)(@,y) = det(g Z

(@-9,97"Y) =g (tas(f))(2,y)

iﬂzay

Therefore V(a;,b;) = kereg. p, C S(ar,br) is a subrepresentation with the
induced action.

This representation of G is a realization of p(a,, b, d;)”, with xf_’ly?"g the high-
est weight vector, and x?_,3y§71 the lowest weight vector, with respect to B and
M. If v, € plas,br,d;)" and g € G, we will denote simply by gv, the action of
g on v;.

Fix a= (a‘r)‘r:E‘—>C 3 b = (bT)T:E‘—)C and d = (d‘r)‘r:E‘—>C such that Qr, bT > 0.
Denote by p4 .4 the representation of G' on the underlying vector space

pla,b,d) = ® plar, by d:)"
T:E—C
for which an element g € G acts componentwise.

In particular, for any Q. .p .~ vr € p(a, b, d),

Pa,b,d(g)< X v7> = X o
T:E—C T:E—C

For i = (ir), j = (jr) sequences of ir,j, € Z?éo with |ir| = ar,|jr| = br, we

denote o ,
ayl = Q) @yl
T:E—C
The representations pgp,q are irreducible, and in fact exhaust all irreducible
algebraic representations of G = Us(F).

This description of the irreducible algebraic representations of GLj3 is given e.g.
in (Fulton and Harris [12]) over C, and the consequence for representations of
Us over C' can be obtained, for example, by considering (Tits [26]).

Note that this description, up to a twist by a power of the determinant, exhausts
all irreducible algebraic representations of G over C.

For any 7 : E — C, we may consider an endomorphism U,_;_ € End(S(ar,b;))
whose action is described by

UaT,bT (x’Tyﬁ) = T(W)il_j1+a7 . T(ﬁ)jS_iB-l‘b—r . x:—yz—

for any 4, j € Z3,, such that |i| = a,,[j| = b-.

Denote

Uap,d = ® Ua, b, .d, (3.1)

T:E—C
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Lemma 3.1. There exists a unique function ¥ : G — Endc (p(a,b,d)) sup-
ported in Koo 'Ky such that:

(i) for all ky, ke € Ko, we have ¥(kiaks) = pap.a(ki) o v(a™) o papalks).
(i) Y(a™!) = Ugp.d-
Proof. Suppose there exist two such functions 91, ,. Then by (i), ¥ (a™!) =

Po(a™t), hence by (i), ¥1(g) = a(g) for all ¢ € Koa~ 'Ky, hence the unique-
ness.

For the existence, it suffices to show that v is well defined, i.e. that if ki ko =
a~! with k1, ko € Ky, then w(kla_lk‘g) = ’(/)(a_l).

But for any i = (ir)rgec and j = (jr)rpoco with ir,j; € Z2; such that
li-| = a, and |j;| = b;, one has

Uspa= & U=< 11 T<w>af+df~7<w>bf-df) papala™) (3.2)

T:E—C T:E—C

For brevity, denote

Therefore, if k1o~ 1ky = a1 for some ki, ks € Ky, then

Pap.alkr) om0 poy a(@™t) 0 papa(ks) =740 - popa(a)
hence
paba(ki) op(a™) o papa(ks) = P(a™")
which finishes the proof. O

3.2. Compactly induced representations

In what follows R is either C or Oc¢.

Definition 3.2. Let G be a topological group, and let H be a closed subgroup.
Let (m,V) be a R-linear representation of H over a free R-module of finite rank

V. We denote by indflﬂ or by indeV the smooth compact induction of (m, V)
from H to GG. The space of the representation is

M P f(hg) ==(h)f(g) VheH
indpm = {f GV f has compact support mod H, f is smooth
and G acts on ind$m by right translation, i.e. (gf)(z) = f(xg) for all g,z € G.

If G is topological group, H is a closed subgroup, and (7, V') is an R-representation
of H, we denote by [g,v] € indgﬂ the function supported on the coset Hg™*
with value v € V at g~!. Explicitly

_ [r)w) w=ng
9.0]() = {O oy (33)
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Note that the following identities hold
v.gugla.QZ €eG 91[927v] = [919270]7 v.g € G7Vh €H [gh,v] = [977r(h)(v)}

As the type 0 vertices of the Bruhat-Tits tree correspond to left cosets of Ky in
G, we have an isomorphism of G-sets between 73 and {[g, 1]} je/x, , and we will
often consider the functions [g, 1] € incl%0 1, where 1 is the trivial representation,

as the type 0 vertex in the tree, g~ 'vg.

We recall also the following result, giving a basis for the R[G]-module ind$n
when H is open. (see Barthel et al. [4]).

Proposition 3.3. Let H be an open subgroup of G. Let B be a basis of (mw, V)
over R and G a system of representatives for the left cosets G/H. Then the
family of functions T = {[g,v] | g € G,v € B} is a basis for indG.

3.3. Locally algebraic principal series representations

Let M = M(F') be the standard maximal torus of B consisting of diagonal
matrices.

Definition 3.4. Let x : M — C* be a C-character of M inflated to B. The
smooth principal series representation corresponding to x is

indS (x) = { FiGo e g oven st Jogh) = E(?}f(g) }

with the group G acting by right translations, namely (gf)(z) = f(zg) for all
r,g € G and f € indG(x).

Note that the maximal torus M = M(F') of B is of the form

t 0 0
M={mys:=| 0 s 0 ||teEXsecE"}~E*xE
00 '

Therefore, any smooth character xps : M — C* is of the form yy = x ® x1,
where x : EX — C and x; : E! — C are smooth characters, i.e. yas(ms) =
X(t)x1(s).

Remark 3.5. Note that in this case the induction is compact by the Iwasawa
decomposition, G = BKj, showing that any function f € ind%(x ® x1) is
compactly supported modulo B.

The representations we shall be interested in are the locally algebraic ones,

meaning that every vector has a neighbourhood in which the action is polyno-

mial. To be precise?!,

1In fact, the usual definition of a locally algebraic representation is using only condition
2, see e.g. Emerton [10]. However, the following theorem is from the appendix of (Schneider
et al. [23]), so we follow the definition given there. In the case of completed H! of modular
or Shimura curves (by an argument of Emerton), or in the case of completed H® of definite
unitary groups, condition 2 implies condition 1.
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Definition 3.6. A C-representation (m, V') of G is called locally algebraic if:

1. The restriction of 7 to any compact open subgroup K of G is an algebraic
direct sum of finite dimensional irreducible representations of K.

2. For any vector v € V, there exists a compact open subgroup K, in G, and
a finite dimensional subspace U of V', containing v, such that K, leaves U
invariant, and operates on U via restriction to K, of a finite dimensional
algebraic representation of G.

Definition 3.7. The locally algebraic C-representation of G, Vs, ® V14, where
Vsm is a smooth representation, and Vg, is an algebraic representation, is called
a locally algebraic principal series representation if Vi, is a smooth principal
series representation.

Recall the following result (see Appendix of (Schneider et al. [23]), Thm 1)
about irreducibility of locally algebraic representations -

Theorem 3.8. Fwvery irreducible locally algebraic representation m of G is the
tensor product m = Tqiqg @ Tem of an irreducible algebraic representation mqg
of G and a smooth irreducible algebraic representation mwsy, of G. Conversely,
the tensor product a1 ® Tem of an irreducible algebraic representation mq4 of
G and an irreducible smooth representation g, of G, is an irreducible locally
algebraic representation of G.

As in this work, we are interested in irreducible locally algebraic representations,
we will only consider representations of the form m4;y ® mgy,. Furthermore, the
cases where 7y, is essentially discrete series or supercuspidal are known (see
Sorensen [25]), hence we consider only the cases where 7y, is an irreducible
smooth principal series representation as above.

We remark that the Breuil-Schneider conjecture also deals with indecomposable
reducible representations, however we will not address this case presently.

Thus, by the above classification of irreducible algebraic representations, we are
interested in representations of the form

(7, V) = IndG(x ® X1) ® Paba

where x : EX — C, x1 : E! — C are smooth characters and a,b € Zggm“ZQ(E’C),

3.4. Spherical Hecke algebras

Let R be either C or O¢, let K be an open compact subgroup of G, and let p be
a continuous R-linear representation of K over a free R-module V, of finite rank.
The Hecke algebra H,(K, G) associated to K and p is the R-algebra defined by

H,(K,G) = Endgg)(ind%p).
By Frobenius reciprocity for compact induction, for any R-representation 7 of

G, one has
Hompg (ind$p, ) ~ Hompgik(p, 7 | k).
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Thus, we can interpret H,(K, G) as the convolution algebra

_1,. V(kigka) = p(k1) o b(g) o p(k2) Vg € G ki, ks € K
Hi(p) = {d] 1 G = Endg(V,) | 1) has compact support :

The convolution operation is defined for any 1,12 € Hx (p) and any g € G by

(1% ¥2)(g) = Z P (2)a(a"g)

rKeG/K

It admits a unit element 1., supported on K, attaining the identity at 1, i.e.

_Jrlg) geK
%(9){0 0d K

Then the bilinear map

Hi(p) x indSp —  indSp
@) = W.H= D, d@(flz'g)

zKeG/K

gives ind% p a structure of a left H x (p)-module, which commutes with the action

of G.
Lemma 3.9. The map

Hi(p) — Hy(K G)
o= Ty(f) =, f)

is an isomorphism of R-algebras. In particular, if g € G and v € V), the action
of Ty on [g,v] is given by

Ty(lg. o)) = Y o, d(a™")()] (3.4)

zKeG/K

Proof. This is straight forward and well-known. See e.g. (De Ieso [9] Lemma
2.4). O

We recall further that when p is the restriction to K of a continuous represen-
tation of G, there exists an injective homomorphism of C-algebras (Schneider
et al. [24])-

LP:HK(C) — 'HK(/))
e = (¢-p)g) =w(9)r(9)

where C' is the trivial representation of G on C. This homomorphism is in
fact bijective for certain irreducible locally Q,-analytic representations p, in the
sense of (Schneider and Teitelbaum [22]) , by the following Lemma (see De Ieso
[9] 2.5)
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Lemma 3.10. Let g = Lie(G). Then if the g ®q, C-module V, is absolutely
irreducible, the map ¢, is bijective.

Recall that by Lemma 3.1, we have constructed ¢ € Hg,(pap) for any a,b €

ngm“l"(E’C). By Lemma 3.9, it corresponds to a Hecke operator T' € H,(Ky, G),
whose action on the elements [g, v] are given by the formula (3.4).

Lemma 3.11. There is a C-algebra isomorphism

Hpaya(Ko, G) = C[T]

Proof. The space V), , , is an absolutely irreducible g ®g, C-module, hence
lpyyq 15 an isomorphism of C-algebras. Lemma 3.9 shows that there exists a
unique morphism of C-algebras u,, ,, : Hco(Ko,G) — H,, , ,(Ko, G) making

the following diagram commute o

Hi, (C) He (Ko, G) (3.5)

lbﬂa,b,d l“ﬂa,b,d

HKO (p@é,d) — 7_[/J b,d (K07 G)

By construction, this morphism is an isomorphism of C-algebras. Denote by
Ty € He (Ko, G) the element corresponding to 1x,q-1x, € Hi,(C) by Frobe-
nius reciprocity.

If ¢ € Hg,(C), then as it has compact support, by the Cartan decomposition
(Proposition 2.15), it is supported on H?:o Koo~ 'Ky for some integer n. As ¢
is Ky-biinvariant (recall that C is the trivial representation), its restriction to
each S; = Koo~ 'K, is constant, hence we may write ¢ = Yoo Liga-ik,-
Let T; € Hco (Ko, G) be the operator corresponding to 1g, i, by Frobenius
reciprocity. Then we see that the T,,’s span Ho (Ko, G) over C. Geometrically,
T, is the operator associating to a vertex v of type 0 the sum of the vertices of
distance 2n from v: this is because

lKoa_”’Ko = E ]-Kow -
KozeKo\Koa—" Ko

= > (271 1] = > =t [1,1]

KozeKo\Koa—"Kg KozeKo\Koa—" Ky

and then the 2~ 1vy are all distinct and give all vertices v’ € T such that v’ is
Ky-equivalent to vg,. This means that (vg,v’) is equivalent to (vg, vay, ), which
is precisely our assertion. From the geometrical description of T, one gets
directly, using Corollary 2.25, that

2 {T2 + (@Y= 1DT 4 (¢*? +1)¢"/? E/F unramified
2 =

- T+ (¢— DT+ (¢ +1)q E/F ramified
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Explicitly, let dy, d; be the degrees of vertices of types 0,1 respectively.

If z is a vertex such that d(z,v) = 4, then there is a unique vertex w lying on
the geodesic from v to z with d(z,w) = 2 = d(v,w). Therefore, when applying
T?, each of them is counted once.

If z is a vertex such that d(z,v) = 2, then there is a unique vertex u lying on
the geodesic from v to z, which is a common neighbour. This v has d; — 2
other neighbours whcih are at distance 2 from v, hence whem applying T?, it is
counted d; — 2 times.

Finally, v is counted once from every vertex of distance 2 from it. As there are
dp - (dq — 1) such vertices, it is counted dp - (dq — 1) times.

Since T7 yields only vertices at distances 0,2,4 from v, these are all the possi-
bilities, and we get

T2 =Ty + (dy — 2)Ty +do - (dy — 1)

When we plug in the degrees in each of the cases, we get the answer.

In any case, it follows that Ty € C[T}]. Furthermore, for any n > 3, we see that

T . — T, + (ql/2 ~ DT, 1+ ¢*T,_o E/F unramified
ton=t T+ (q— DTy 1+ ¢*Tp o E/F ramified

showing that if T,,_; € C[T4], then also T,, € C[T].

Again, if we consider some vertex at distance 2n from v, there is a unique vertex
at distance 2(n — 1) from v between them, which accounts for it when applying
T\T, ;.

If we consider a vertex at distance 2(n — 1) from v, there are d; — 2 vertices
of the same distance sharing a common neighbour with it, hence it is counted
d1 — 2 times when applying 717, 1.

Finally, if we have a vertex at distance 2(n—2) from v, there are (dy—1)(d; —1)
vertices at distance 2(n — 1) from v, having this vertex on the geodesic, thus
each such vertex is counted (dy — 1)(d; — 1) times when applying 717, —1.
When we plug in the degrees in each of the cases, we obtain the result.

It follows that Ho (Ko, G) ~ C[T1].

As up, , ,(T1) = (7224)=1. T it follows that H,, , ,(Ko, G) ~ C[T]. O

a,b,d

Finally, as described by Kato (Kato [17], Thm 3.2), we have an intimate con-

nection between the Hecke algebra and the irreducible smooth principal series

representations.

Theorem 3.12. Let x : M — C* be a smooth unramified character.

Assume ¢ € ind%x is supported on BKo and given there by ¢(bk) = x(b). Then
. el Ko

RS (md Bx) .
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Assume ind$x is generated by ¢. Define j : ind?(OC’ — indGx by i(f) = Fy,
where

Fylg) = /G o(gh™) f(h)dh

Note: (i) Fy(bg) = x(b)Fy(g)
(i1) Fr(9) = Xneroa @gh™ ) f(h) = (f * ¢)(9)

Then j induces an isomorphism of G-representations

ind%, C
(Tl — Oy (Tl)) . md?(OC’

ind§x ~

where o, : Ho (Ko, G) — C is an algebra homomorphism of the Hecke algebra
induced by x, and Heo (Ko, G) ~ C[T1].

In particular, when indgx is irreducible, this holds. Thus, we obtain the fol-
lowing corollary.

Corollary 3.13. Let x : EX — C* be a smooth unramified character, and let

a,be Zggm“lg(E’C), d € ZHomaig(B.C) - Then if indgx is irreducible, one has

indf pab.d
(T — o (1)) - indf(opg,gd

indEX @ papd
Proof. As pgp,q is a finite dimensional representation, tensoring with it is an
exact functor, thus

(ind%,C) @ pap.a
(Th — ay (1)) - ind?{gc) & Pa,b,d

indgx ® Pab,d (

However, by the commutative diagram (3.5), we see that

(ind%}o C') & Pa,b,d N ind?@ Pab,d
((Tl —ay(Th)) - z’nd?(o C) @ pab.d (upa‘g,g(Tl) - ax(uﬁa,g@(Tl))) ) ind?{opﬁ@i

But, as u,, , ,(T1) = (7%2)~1 . T, the result follows. O

a,b,d

In order to better understand the values of «, (T%), we present the universal
principal series.

3.5. The universal principal series

In this section, and in this section alone, R = C[t,t~1] where t is a variable, and
let x : B — R* be the smooth character

a *x *
X 0 * — tvalE(a)
0 0

-1
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Note that these are not R and x as they appear in previous sections.
The universal unramified principal series representation is
G
m(x) = indpx
Here valg : E* — 7Z is the normalized valuation on E such that valg(ng) = 1.

Its specialization under ¢t — A € C* is w(x,), the unramified principal series
representation.

For any f € 71'(2(), one may associate a locally-constant R-valued function f on
N by the rule f(n) = f(sn).

Lemma 3.14. (i) This procedure identifies w(x) with the space of locally con-
stant functions on N satisfying

f(np») = const - gvale(2)
for all z large enough.

(#9) w(x) is free of countable rank over R.

Proof. (i) We have

1 b =z z7b —271p 1 1 0 0
s-| 01 —=b | = 0 —z1z —bp —z7 1 0
0 0 1 0 0 z 271 27 1p 1

hence for large z, 2~ 'b — 0, so one has f(n; ) = t~%#(=) . f(1). By Bruhat
decomposition, this is reversible.

Indeed, if FF € C*°(N) is a locally constant function satistying F(n;.) = c-
t—vale(2) for all z large enough, then we may define

fr(bsn) = x(b)- F(n) Vbe B, neN
and
fr(®)=x(b)-¢c YbeB
The function fr is well defined, since G = BsN [[ B, with unique representa-

tives, by the Bruhat decomposition.

Moreover, it is locally constant, as for g € BsN it follows from the fact that F'
is locally constant, and by the above equation

1 0 0 z7b 1 1
frl 25 1 0 | =x" 0 —27'2 b | -F(mp.)
e | 0 0 z

so that for all z large enough,

1 0 0
frl —z7% 1 0 | =tvadeG) . epmvale®) — o= fp(1)
271 27 1p 1
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This gives us an open compact neighbourhood of 1, such that fr is constant
there, and by translation, it shows that fr is locally constant on B.

Finally, we note that fr(n) = fr(sn) = F(n) for all n € N, and vice versa,

J5(bsn) = x(0) - f(n) = x(b) - f(sn) = f(bsn), f7(b) = x(b) - f(1) = f(D)

showing that these are inverses.

Note that the functions f of compact support correspond to f vanishing on a
neighbourhood of B.

(ii) In this model, we see that 7(x) = C°(N, R) @ Rf,, where

B 1 n e N(O )
fo(n) = {t—valE(Z) n §é N(OE)

The space of locally constant function of compact support is easily seen to be
free of countable rank. O

3.5.1. Normed isotropic lines

Recall that B\G is identified with the space F of isotropic lines in V = E3. We
denote such a line by &.

The identification of B\G with F sends Bg to £{(g) where

€g)=E-g7"| 0
0

Let By = ker(x). We may similarly identify By\G with the space F of equiva-
lence classes of pairs

§=[&M]

where £ is an isotropic line, and M C £ is a lattice.

~

The identification with By\G sends Byg to £(g) = [£(g9); M (g)] where

1
M(g)=0g-g ' 0
0

We call é a normed isotropic line.

Indeed, we have a transitive action of G on the space of normed isotropic lines
- namely g[¢§; M] = [g&; gM].

Consider the normed isotropic line (1) = [e1; Ogei] = [€0; Mo]. Then g sta-
blilizes £(1) if and only if ¢ € B, and g stabilizes Oge; - this condition is
equivalent to g11 € (’)g. Hence the stabilizer is By.
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The action of G on F corresponds to the action on Bg\G by right translation
glg) =g- () =Egg™)

But Bo\G carries also a commuting action of B on By\G by left translation,

which on F will be denoted b * 5, ie.

It is well defined since By < B. If b = , then this action is

O O w
o *

given explicitly by
bx (& M) =& 2 M]

3.5.2. The embedding of indIG%C in w(x)

We shall now give a geometric interpretation for 7(x). Recall that R = C[t,t71].

Let CX(]? ) be the space of locally constant R-valued functions f on F which
are B-equivariant in the sense that

Fbx€) =x(0) £(§)
= 0 0
for all b € B. Explicitly, takingg=1 0 1 0 = a1, we see that
0 0 7!
Fgm™ M) =t f(l& M])

We let G act on C, (F ) via its action on F
af(€) = f(g7'é).

We may now identify 7 (y) G-equivariantly with Cx(ﬁ ), because a locally con-
stant function f : G — R satisfying

f(bg) = x(b)f(9)
gives rise to a function f : F — R satisfying T &) = x(0)F() if we let

F(€(9)) = f(g) and vice versa.
Using this interpretation, we now define ¢ : indﬁoc — m(x), or what is the

same, ¢ : ind% C — Cx(ﬁ).

It is enough to define ¢(1,) for some v € TP. Let ¢ be an isotropic line. Let L
be a standard lattice (L = L*) such that v = [L]. Then L determines a normed
isotropic line &y, = [¢; M] over € by letting M = LN ¢E.

The function ¢(1,) is uniquely defined on the fiber above £ by the requirement

that
L(]-v)(gl/) =1

When vy is the standard lattice, this definition means, group theoretically, that
1(1k,) is defined on BK = G by ¢(1x,)(bk) = x(b) for b€ B and k € K.
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3.5.8. Theorem

(i) The map ¢ is G-equivariant and, denoting ¢ = ¢g,

(T10) (t- @+t +(¢*? = 1))(¢) E/F wunramified
L =

! -+t +(g—1))(o) E/F ramified

(it) The map ¢ induces by specializing t — A, tx : indf C — m(x») is the
map j described in Theorem 3.12, and when indgx)\ is irreducible, induces an
isomorphism

ind%OC
(Ty =Xt =X-g? = (¢° — 1)) -indG, C

ind$x ~

with e = 1/2 if E/F is unramified, and € = 1 if F/F is ramified.

Proof. (i) Let L be a standard lattice representing v. Then gL is also a standard
lattice representing gv. Then g(1,) = 14, and g(&r) = &4z so

W(g(1,))(g(€r)) =1

which shows that ¢(g(1,)) = ¢t(1,) o g7 = g(¢(1,)).
If £ € F we define the height of a vertex v (w.r.t. origin vy and &) as follows.
Let vg,v1,...,0p,... be the geoedesic from vy to £ (recall that F is identified
with the ends of the tree). Let k& be such that vy lies on the geodesic from v to
&. Define

he(v) = k — d(v, vg)
This is independent of k. If we “hang” the tree down from &, vertices with the
same height are “equidistant” from ¢&.
Consider ¢ = 1,.. If v € T we have

Tl(lv) - 1u
d(u,v)=2

One of the neighbouring vertices, say ug, lies closer to £ than v, i.e. he(ug) =
he(v) + 1, and the other |No/Ni| vertices, say u; (1 < ¢ < |Ny/Ny|) satisfy
hg(’ui) = hg(U) —1.

The vertex ug has a single neighbour, wg, which lies even closer to &, so that
he(wo) = he(v) + 2, and the other |N1/Na| — 1 vertices, say w; (1 < i <
|N1/N| — 1) satisfy he(w;) = he(v).

Any of the u; (i > 0) has |N1/N2| other neighbours, w;; (O <ji< |N1/N2|)
which lie further from &, hence he(w;;) = he(v) — 2 for all 4 > 0 and all j.

But for any E above &,

U(Lwg)(€) = 1(L,)(€) - ¢

125



while if 1 <4 < [N1/N3|, then

1L, )(€) = ¢(1,)(E)

and if ¢ > 0 and j is arbitrary, then

L(lwzj)(é) = L(lv)(é) -t

In fact, the formula
hg(v)}

(1) (Eny) =107
holds true, if Lo = O3, is the standard lattice representing vg.
It follows, using Lemma 2.23, that for v € 70, if E/F is unramified

LT (1) = (1) (4 + (g2 = 1) - ¢?)
while if E/F is ramified
L(Ti(1) = (L) - (T + (g = 1) +1-¢°)

This proves (7)
(7i) Specializing t to A, we obtain an intertwining operator ¢y : ind%}C’ —
ind$x which factors through (73 —A~' = X-¢® — (¢¢ — 1)) - ind?%C’, and sends
1k, to the spherical vector ¢. As both ¢y, j are G-equivariant, and 1, generates
ind?(OC as a G-representation, they are both determined by the image of 1x,.
But ¢tx(1k,) = ¢ = j(1k,), hence 1) = j.
As ind% X is irreducible, it follows from Theorem 3.12 that ¢y = j induces an
isomorphism

G

indg C
T — ay (Th)) -indﬁOC’

7T(X)\) = (

where T7 acts as a,(71) on 7(x»). But we have shown in (4), that 77 acts on
7(xx) as At + X g% + (¢¢ — 1), thus we obtain an isomorphism

ind?{OC
T — A 1=X-¢2—(¢¢c—1)) ~indf(00

m(Xa) = (

O

Corollary 3.15. Let x : E* — C* be an unramified character, such that
x(m) = X and such that indgx is an irreducible representation of G. Let

a,0 € 285m0 4 e gHomeaaBO) and denote 7204 = [, .o 7(7)% Hr -
7(m)br—d4 C C. Then

ind% pab.d
(T — mabd . (A=L — X ¢2 — (¢ — 1))) - indF, papd

indGX © pabd ~

with € as above.

126



We denote for any c € C

- 1G
ind KoPa,b,0

Oy pc = ;
a,b,c (T —c)- zndﬁo Pa,b,0

where 0 : Homgg(E,C) — Z is the zero map, and will later translate using the
above corollary conditions on ¢ to conditions on A.

We shall denote from now on also
Pa,b ‘= Pa,b,0, p(a‘rvb‘r)T = p(aT,bT,O)T, 7T*b

3.6. Integrality and separated lattices
Let us first define what does it mean for a representation of G to be integral.
Definition 3.16. Let R be a complete discrete valuation ring of fraction field

S. An S-representation V' of G of countable dimension with a basis generating
a G-stable R-submodule of L, is called integral of R-integral structure L.

One may equivalently define integral structures as separated lattices in the fol-
lowing sense:

Definition 3.17. Let R be a complete discrete valuation ring of fraction field
S. Let V be an S-representation of G. A lattice L in V is a sub-R-module of
V such that for all v € V, there exists a nonzero element a € S* such that
av € L. A lattice L is called separated if it does not contain any S-line, which
is equivalent to (), .y 7" L = 0, where m € R is a uniformizer.

The identification follows immediately:

Proposition 3.18. Let R be a complete discrete valuation ring of fraction field
S. Let V be an S-representation of G. An integral structure in 'V is a G-stable
separated lattice in V.

Example 3.19. The sub-O¢-module p°(a,,b,)” C p(a,,b,)” for any 7: E <
C' is defined by

N A
Po(a—rvb—r)T = f(x‘rvy'r) € @ Oc - x}ryfjr | E =0
k=1

i,jGZ?;O _ axT,kayT,k
lil=ar,|il=br
It is a separated lattice in p(a,,b;)7, which is further stable under the action of
K.

Further, we note that U,_ ;. , defined in 3.1 acts as 7(7)% - 7(m)* - ™!, hence
preserves p°(a,,b,;)”. Moreover, it satisfies

ar  br\ _ _ar br
Ua/7'7b7' (x‘r,3y7',1) - x‘r,3y7',1

and for any other such vector (i.e. (i,5) # (0,0,a.),(b-,0,0)), we see that
iyl e - par,b,)7.
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Example 3.20. Therefore, we may also consider the sub-O¢g-module pg’k =
®..pesc Par,b)7 C pap for any a,b € (Zzg)" "o ",

separated lattice in p,, which is stable under the action of Kj.

Then p?, is a

Consequently, the Oc-module incl%O pg, , is also a separated lattice in indf(o Pa,b
which is further stable under the action of G.

It follows that we have an injective map H,o (Ko, G) < H,,,(Ko,G), and

the operator T' € H,, , (Ko, G) , defined in Lemma 3.9, induces by restriction a
G-equivariant endomorphism of H 0 (Ko, G), which we denote by T as well.

b

Lemma 3.21. There is an isomorphism of Oc-algebras H o (Ko, G) ~ Oc|[T].

b

Proof. Recall that by Lemma 3.11, we have an isomorphism of C-algebras
Hp,, (Ko, G) ~ C[T].

Moreover, the equations describing 7,, as polynomial in T}, show that 7, €
Oc¢|Th], for all n. In fact, as T}, can be expressed as a monic polynomial of degree
n in T} with integral coefficients, it follows that (7%2)"T}, can be expressed as
a monic polynomial of degree n in 72T} = T, so that (722)"T,, € O¢[T)]. Let
us write f(T) = (722)"T,, for this polynomial.

Let us show that its image on H,o (Ko, G) is exactly Oc[T].

AsT e Hpg’g(Km G), clearly O¢[T] is contained in the image. Let p(T') € C[T]
be a polynomial corresponding to an element in H o b(KO’ Q).

Assume deg(p) = n, and let a,, be the leading coefficient, i.e. p(T) = a, T" +
Pn_1(T), where deg(p,,_1) = n—1. It follows that p(T) = a,(7%2)" Ty, +q,_1(T),
for some ¢ with deg(g,—1) =n — 1.

We recall that T;, is the image under the natural isomorphisms of 1x .-k, €
Hp (C), which maps to 1g, o-nk, - Pab € Hr(p), finally mapping to

Tollg, o) = D 197 Lkganko (@ Dpap(z™)(v)] =
zKo€G /Ko

= Z [gxapg,b(xil)(v)]

zKoeKoa~" Ko/ Ko

Since o™ € Kga~"Kj, and polynomials of order less than n are supported on
]_[;:01 Koo' Ky, it follows that for any v € p,, one has

(p(D)([1,0]) (") = (an(7)" Th([1,0]) (@) = an (1) pap(a™")(v) = anlUpgy(v)

where the right most equality follows from (3.2).

In particular, taking v = @..p . xﬁ’gy:’l, we see that v € p&b, hence [1,v] €
ind%opgg. As we assume p(T) € ”Hpg&(KmG) = Endo,q) (indlc(opgjé), it fol-
lows that p(T)([1,v]) € ind?’}(,pg,@, hence a, U}, (v) = (p(T)([1,v]))(a") € pg’b.
But, by definition of U, we see that U, (v) = v, hence a,v € pJ ;.
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However, by definition of pgg , this is possible if and only if a,, € O¢. Therefore,
we see that a,T" € O¢[T], and it suffices to prove the claim for p(T) — a,T",
which is a polynomial of degree less than n.

Proceeding by induction, where the induction basis consists of constant polyno-
mials, who can be integral if and only if they belong to O¢, we conclude that
p(T) € Oc(T). O

4. Integrality in unramified principal series representations

As we are interested in studying the integrality of irreducible locally algebraic
representations, we consider representations of the form indg(x ® X1) ® Pab.d-

When discussing the existence of an integral structure, we may twist by a central
character, hence one may assume that y; = 1.

In addition, for any g € G, det(g) € Oj is a unit, hence integrality is not
affected by twists of the determinant, and we may assume that d = 0.

Moreover, by Corollary 3.15, we may consider only representations of the form
Hap,c-

4.1. Construction of Lattice

In order to hope for an integral structure in Il,p ., we should demand that
c € O¢. We intend to show that this is a sufficient condition, at least when a, b
are small.

We may now define for any o € O¢

Oupe=Im (ind%} Pab — HE’Q,C)
This is a lattice in Iy, and as ind%, p5 , is an O¢[G)-module of finite type,
we see that O . is also an O¢[G]-module of finite type.
Conjecture 4.1. If c € Oc, then Ogy.. is an integral structure in Ilgp ..

Let e = 1 if E/F is unramified, and € = 1 if E/F is ramified.
Note that by Corollary 3.15, as ¢ — 1 is a unit, this implies

7)"(12

|7|*™" . max (A"

,1)2’Wﬂ’g‘-|)\_1+)\-q2+q€—1’Sl

where the equality on the left holds since A7 = [\ - ¢?| = |A| = |¢|7* > 1,
whence |A\71| = |¢q] < 1.

wherea=3%"_p . ~a-,b=> _ 5 ~b-. Weobtain
()T e Og, 7% x(7) € O¢

which is the condition stated in Theorem 1.5.
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We will further assume that ¢ € po. The results will hold also trivially for
ce OF.

As T stabilizes ind$ pQ ,, we have
(T~ 6)(ind§ ) € (T~ &)(ind, pas) N ind$, o0,

Thus we have a surjective homomorphism of O¢[G]-modules
ind%‘}o pgé

: (T — c)indf(opo

a,b

= Ogp.c

When 6 is injective, ©4 4 . is a quotient of a free Oc-module. However, such a
quotient might contain a C-line.

As the following simple Lemma suggests, the missing ingredient is the complete-
ness of the quotient ideal, which is clear in the above case.

Lemma 4.2. Let M be an Oc-module. Let N C M be a submodule such that
N ®o. C is mc-adically complete, and such that (N ®o, C) N M = N. Then
M/N contains no C-line.

Proof. Assume that C - [m] C M/N for some m € M. Then for any n € N,
there exists m, € M such that [m,] = n;"[m|, i.e. m — 7m, € N.

But m¢-adically, we see that lim,, oo (m — mm,) = m, hence by completeness,
m € N ®o, C. Thus, m € (N ®o, C) N M = N, so that [m] = 0. This shows
that M /N contains no C-line. O

Consequently, if 6 is injective, letting M = indﬁo p27b and N = (T —¢)- M,
we see that they satisfy the assumptions of the Lemma, establishing that ©4p. .
contains no C-line, hence the conjecture is true. Therefore, we are interested in
determining when is 6 injective.

The following theorem is inspired by the work (Grofie-Klénne [14]), who proves
a generalization of this statement for split reductive groups, and uses the ideas
presented there.

I(1)
Theorem 4.3. The homorphism 0 is injective iff (Pg,g ® kc) s one-dimensional.

Proof. Begin by showing the “if ¢ statement. Let f € indf(o Pa,p DE such that
T(f)—cf € indﬁopg&.

Recall that for any n > 0 we have defined S,, = Koo " Ky, and B, =[] _ Si-
Moreover, we have S,, = SO [[ S%,, where SO, = Ia~™K,, S., = IBal"™K.
We further denote, for any Oc-module V, by B,,(V), S, (V), S: (V) the functions
supported on By, S,,S¢ respectively, with values in V.

Let n be the minimal integer such that f € By(pgp). Write f = Y0 o fim,
with fim € Sm(pap) - For any m, we let f,, = 9 + f} with fi € S¢ (pap)-
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Recall that by our earlier observations (Corollary 2.19)

Koo 'Ko=Ia'Ko [[18Ko= | [ we ‘i |JT| I #BKe

n€No /N2 nEN /No

Lety € Hk,(pqap) be the function corresponding to T', as defined in Lemma 3.1.
It now follows from (3.4) that for any g € G and any v € pgp

T(lg,0) = > lgna " p(@on™ @]+ Y. (B¢ ") on ()]

nENy /N2 nENL/N2

where we have used the fact that ¥ is Ky-bi-equivariant.

Let us denote

TH((g,0)) = Y lgna™" ¢(a)on " (v)]

nEN()/Nz

(gol) = Y, [gnB (B ") on ' (v)]
1#nEN1/N2
and
T~ ([g,v]) =[98, 0(57")(v)]
Then TF(f2) is supported on S,,41, and as cf is supported on B,,, it follows by
assumption that T+ (f0) € indf(o pg’b.
By the following Lemma 4.4, it will follow that f0 € ind}G(O p&b.

Similarly, since f} € S!, we see that Sf! € SY_,, hence TT(Bf}) € S2 and
BTT(BfL) is supported on S, ;1. Since cf is supported on B,, by assumption,
we see that also ST (Bf}) € ind§, pd -
However, it follows that T (8f}) € indgo pg’b, hence by the Lemma 4.4, we also
have Bf} € indf(opg,b, showing that f! € ind}%ﬂg,g- Thus, f, = f0+ fl €
ind% p2 .

o"a,b

Proceeding by induction, we see that f € ind%o pgé, hence the result.

1(1)
Conversely, if (pg& ® kc) is not one dimensional, it must contains v #

- xiﬁy?k . Moreover, as ). xf_TByﬁ*l is not I(1)-invariant (unless the repre-
sentation is trivial, hence one-dimensional), it follows that sv # @ a:ijlyﬁj?).
Therefore 1 () acts as a multiple of 7, by construction, on both v and sv.

By rescaling, we may further assume that v ¢ ngé. Let 6 € {¢(n),c} be of
minimal valuation. (Here ¢ : E < C is a choice of a fixed embedding) It follows
that §1u(m),6 e € Oc, hence

TH[LS ) = Y [t (@) on( )] =

NENg /N2
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= Y i () ()] € ind$, L,

’I7€N0/N2
also, as for any n € N1, n € 1 + mKj, we see that

T )+ T (L6 )= Y- BB ) on (67 )] =

neﬁl /NQ

= Y B (xas)on M) e Y 8,67 (£a)(sv)] + indF ph

neﬁl /Nz ’I’]Eﬁl /FQ

where the sign is determined by ramification of E/F. As t(«) acts as a multiple
of 7 also on sv, we deduce that T'([1,671v]) € indf(opgyb. However, also c -

[1,67 0] = [1, (07 e)v] € ind, pY ,, showing that -
(T — &) ([1, 6] € ind§ 00, (T — c)ind%, pas

while [1,67 0] ¢ ind% p0 ,. Thus 6 is not injective. O

Lemma 4.4. Letn € N, and let f0 € S° (pap) be such that TH(f%) e ind%opg,g.
1(1)
Assume (pg)b ® kc) is one-dimensional. Then f° € ind%}pg’g.

Proof. Tt suffices to show it for a function of the form [g,v], but then by the
above formula

T*(lg,v]) € indg,pa,, <= v(a)on '(v) € ph V€ No/No
So we would like to show that this holds iff v € pg&. We note further that

v ((w(a) © n_l)(v))neNo/Nz “Pab (/@&)‘NO/Nﬂ

is a linear map, and moreover, the matrix representing it has integral coefficients.

Hence it is enough to show that its reduction mod 7¢ is injective, which will
show that the map on the lattice is invertible, hence our result.

Note that Ny = o~ Nya. Therefore, we have a natural conjugation map no
anga~! 1 Ny — Ny, so that any Ny-module is also an No-module.

We use it to define for any Ny-module V
md%gv = {f :Ng =V ‘ f(nong) = omga_lf(ng) Vng € N0,712 € Ng}

with Ny acting by left translation.

Consider the map

Py @kc = ind\ps, @ ke

v e g(a)(nT )]
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It is a map of Ny-modules, which we want to show is injective.

Next, we note that Ny is pro-p, and let U be the kernel of this map. If U # 0,
then UM #£ 0, hence it suffices to show that the map

(Pap @ k)™ — (indz]@ Pap® kC) - (Pab ® ko)™
v e g(a)(nT )] = y(a)(v)
is injective.
But (p) , @ k)N = (2 , @ ko)’ is one-dimensional, and clearly contains the

a

vector Q). :rleyfjg, on which ¥(a) = £so01(a~1) o s acts as +1, depending on
the ramification of E/F, by definition. Therefore, the above map is simply the
identity. O

We may now make this criterion more explicit in terms of a., b,

First, we note that if the weights are all p-restricted, then the reduction pg, ko
(1)

remains irreducible (see, e.g. Jantzen [16]). In particular, (pg,b ® ke is the

line spanned by the highest weight vector, hence one-dimensional, and we obtain

Corollary 4.5. If forallT: E — C, 0 < a,,b; < p, then 0 is injective, and
Iy, is integral for all c € O¢.

Next, we consider several cases where we know 6 fails to be injective.

Let e be the ramification index of E over @y, and denote ¢ = pf, so that
[E:Qp) =ef. Fix an embedding ¢ : E — C.

Denote by ST = {7: F < C | a; + b; # 0} the embeddings for which we have
a nontrivial component in our representation.

For any [ € Z/ fZ, let

Ji={rest () = () Y€k}

where [(] is the Teichmiiller lift of ¢ in E.
For any 7 € J;, we let

UTzlnf{1§Z§f|Jl+z modf?é@}

Note that v, does not depend on 7 but only on the unique ! such that 7 € Jj.

Lemma 4.6. Assume there exists | € Z/fZ such that |J;| > 1. Then 6 is not
injective.

Proof. By assumption, there exist distinct 7,& € ST such that £([¢]) = 7([¢])
for all ¢ € kg. In this proof we shall denote by p the embeddings p: F — C.
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Assume first that both a¢, a, are nonzero. Then, setting i” = (i;),g5 = (i8),i =
(ip)ai = (jp) with

i = (ap—1,1,0) p=r & = (ap=1,1,0) p=¢
P (apa070) p;éT’ P (apa070) /0755,

7:,0 = (ap70a0)7 jp = (anabp)

we may define v = 2% yl—aci5 yl e p27b®kc. Let us show that v is I(1)-invariant.
Indeed, I(1) acts via the reduction, hence it suffices to consider ng ¢ € Ny, with
B,¢ € Og.

However,

T

i g t i j
ngc-xt Y= ® (Mp(8).p(¢) * Tp)'” - (np(—ﬁ),p(f) Yp) =
pE—C

b _ L o
= ®l’2f)1 : ypf)g & 1'2,71 L. (1’7—,2 + T(ﬂ)xr,l) ’ yf—jg =zt yL+7(8) - ztyr
PFET

and similarly, replacing 7 by &, we get

ngc-at yl =ty +£(B) - atyt (4.1)
Therefore .

ng¢-v=uv+(7(8) = £(B)) - atyt
However, as p(ng) € ncO¢ for all p : E < C, in particular for 7,£, we see
that in ko, 7(8) — £(8) depends only on f mod 7g. Since it vanishes on the

Teichmuller lifts, it vanishes everywhere, hence ng ¢ - v = v, showing that v is
I(1)-invariant, hence by Theorem 4.3, # is not injective.

Similarly, if both be, b, are nonzero, we may consider j7, f defined by

. {(0,1,bp—1) p=rT ,5_{(0,1,bp—1) p=¢

Jp = »
P (Ovoabp) p 7& T P (Ovoabp) p 7& T
and v = xiyl — xiyf € pg,b ® k¢, then v is I(1)-invariant. Indeed

ngc - aiyl’ = atyl’ +7(B) - 2yl

and 7(5) = £(f) in k¢, showing that ng . - v = v. Hence, again, by Theorem
4.3, 0 is not injective.

Finally, if w.l.o.g. b, = a¢ = 0, let us denote by o : E — E the conjugation.

Then (oo : E < C is also an embedding. We may consider v = x%’ ylfxiyiﬁoo.
Then v is I(1)-invariant. Indeed

np v = ot yltr(B)atyi— (s + €0 0(F) - alyl) = vt (r(B)—€())wyl = v

O

and once more, by Theorem 4.3, 6 is not injective.
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Lemma 4.7. If there exists p € J; such that either a, > p’ or b, > pr, then
0 is not injective.

Proof. We distinguish three possible cases:

(i) 5% = 2

(it) |ST| =1, and either a, > p¥ or b, > p*r.

Case (1) :

We may assume that v, < f, else ST = Jj, so that |J;| > 2, and we are done by
Lemma 4.6.

v

Therefore, there exists 7 € ST such that for all ¢ € kg, p([¢])P " = 7([¢]).
Assume first that a, > p». Consider i”, i", i, j defined by

Z-p: (apfpvpvpvpao) ng Z'T: (anlalaO) ng
¢ | (ae,0,0) p#€ ) (ag,0,0) T#¢’

if = (a57030)7 JE = (anabf)

and let v = 22"yl — 2yl € pg’b ® kc. Then v is I(1)-invariant. Indeed, for
ﬂaC € OE

vp

. . b —plp b
ng.¢ iyl = ®$§i 'ygfs ® fo)l P (2p2 + p(B)rp1)" “Ypg =

pP#E

b 2 Vp v v v b o v P
— | Qs vty | @™ (ag + p(BY b )yt = 2y p(B) -ty
PF#E
and in (4.1) we have seen that

ngc - xf—yl = xéfyi_k T(ﬂ) . xlyl

Therefore

ngcv=v+ (p(B)" = () atyl

By the choice of p,7, we have p(8)?"" = 7(B) in ke, thus showing that v is
I(1)-invariant, and by Theorem 4.3, that 6 is not injective.

Next, if b, > p®», we may consider j*, j™ defined by

jl?: (Oﬂpvp’bpipvp) ng jr: (Oalab‘rfl) 7_:5
©(0,0,b) p#€ 7 0,0b,) TH#E

and let v = ziyd” — ziyd". Then for 38,¢ € O

L b - PP b,—pr
npc -yt = ®$§i Ve | ® 2,0 W2 +p(B)Yp3)”  yls ' =
pP#E
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b v — v b —pUp . — .
= ®xgi Y | @E (yﬁ,; + p(B)? pyfj,;) st =2ty 4 p(B)P - atyL
pPF#E

so that . B .
nac-v=v+ (p(B)" = (B)) atyl = v

since the coefficients are in ko. Therefore, v is I(1)-invariant, and by Theorem
4.3, 0 is not injective.

Case (41):
Since |ST| =1, v, = f. Assume first that a, > p’ = p/ = ¢. Set

— p(ap—1,1,0), (0,0,b,) _ .(ap—q,9,0),,(0,0,b,)
’U—.rp yp xp yp

Then for any 3, € O we see that

a,—1 ap—q

b b
nge v=a,y (Tp2+pB) wp1)yls a0 (T2t p(B) wp1)! Yl =

_ ap—1 bp a, by ap—q,_4q bp—q q ap by __
=Ty Tp2Yy3 Tt p(B) - Tp1Yp3 —Tp1 Tpolps — p(B)7 - Tp1Yp3 =1

where the last equality follows from the fact that in ke, 8¢ = 8. Thus v is
I(1)-invariant, and by Theorem 4.3,  is not injective.

If b, > pr =pf =g, set
v — xgap,o,o)y‘()o,l,bpfl) _ xg)ap,o,o)yl()o,q,bpfq)
Then for any 3,( € O we see that
0= Wp2+p(B) ypa) ys =25 (W + p(B) Y1) s =
= pnypayys +p(B) - wphys — wpy s | — p(B) -z = v

where the last equality follows from the fact that in k¢, Bq = (. Thus v is
I(1)-invariant, and by Theorem 4.3, 8 is not injective. O

This leads us to conjecture the following.
Conjecture 4.8. 6 is injective iff :

1. Foralll € Z/fZ, |J] < 1.
2. For p € J;, one has a,,b, < p’r.

We have only proven that these conditions are necessary.

5. Diagrams, Coefficient Systems and induced representations

It has been brought to our attention that the material for this section can also
be found in Koziol and Xu [19].
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5.1. Coefficient systems

Coefficient systems were introduced over C by Schneider and Stuhler [21]. In
this section, we follow Paskunas [20] and translate the language of coefficient
systems to the group G.

The notation o will be used throughout this section to denote a simplex (either
a vertex or an edge in 7), as there is no risk for confusion with the previously
defined embeddings F — C.

Let T be the Bruhat-Tits tree of G. Let R be a commutative ring.

Definition 5.1. An R-coefficient system V = {V,}, on a simplicial set T

consists of R-modules V,; for every simplex ¢ C T, along with linear restriction
maps r7 : V; — V; for every inclusion o C 7, such that

o 17 =idy, for every o
e For any 0 C 7 C p, one has r] or? =7,

Equivalently, it is a functor from the category of simplices in 7 (with inclusions
as morphisms) to the category of R-modules.

Definition 5.2. Let V = ({V, }oc7, {r" }ocr) be an R-coefficient system on 7.
We say that V is G-equivariant if for every g € G and every simplex o C T, we
have linear maps g, : V, — V, satisfying the following properties:

e For every g,h € G and every simplex o C T, we have (gh), = gho - ho
e For every simplex o C T, we have 1, = idy, .

e For every g € G and every inclusion o C 7, the following diagram com-

mutes:

gr
VT —— Vg‘r

- g7

Vo >V,
Definition 5.3. Let £L = ({Ls}ocT,{ri}ocr), M = {Ms}ocT, {87} ocr) be
G-equivariant R-coefficient systems on 7. A morphism of G-equivariant R-
coefficient systems on T, ¢ : L — M consists for any simplex o C T of an
R-morphism ¢, : L, — M,, such that for any ¢ C 7 and any g € G the
following diagram commutes

M,,

qgT
\Lsgd
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That is, for any g € G and any o C T we have ¢g © g5 = go © ¢, and for any
o C 7 we have sT o, = ¢, 0717

The G-equivariant R-coefficient systems on 7, with the above morphisms form
a category, which we denote by Coeffpq.

Definition 5.4. Let V be a G-equivariant R-coefficient system on 7. Let 7A'1
be the set of oriented edges of T.

e The R-module Cy(V) of 0-chains is the set of functions ¢ : To — [[, 7, Vor
with finite support such that ¢(c) € V,, for any vertex o.

e The R-module Cy (V) of oriented 1-chains is the set of functions w : T —
[I.er, V= with finite support such that w(7) € V; for any edge 7, and

w((o,0")) = —w((c’',0)). Further, denote (0/,0) = (0, 0’).
e The boundary map 0 : C1(V) — Cy(V) is the R-linear map sending an ori-

ented 1-chain w supported on one edge 7 = (0, 0”) to the 0-chain supported
on the vertices o, 0¢’, with

Ow(o) =rlw(o,0’), Ow(o')=rLw(d o)
Remark 5.5. The group G acts on the R-module of oriented i-chains for i = 0, 1,
by
(gw)(go) = g(w(0))
for any g € G and any oriented i-chain w. The boundary 9 is G-equivariant.
Definition 5.6. We define the 0-homology

_ Go(V)
- IC (V)

Hy(V)
and the 1-homology H;(V) = ker 0. These are R-representations of G.

5.2. Coefficient systems and stabilizers

In what follows, let V = ({V,}ocT, {ri}ocs) be a G-equivariant R-coefficient
system.

Proposition 5.7. The stabilizer in G of a simplex o acts on V, and the restric-
tions r7, 7, are equivariant by the intersection of the stabilizers of the vertices

o,0 of T.

Proof. For any g € stabg (o), we have a linear map ¢, : V, — V,, since go = 0.
Moreover, for any g, ¢’ € stabg (o) we have (g¢9’), = gglag; = o9, showing that
we have a left action of stabg(c) on V. Next, let g € stabg (o) N stabg(o’) =
stabg (7). Then for any v € V., we have

ro(gv) =15 (9:v) = (r959:)(v) = (go17) (V) = go - 75 (v) = g - 17(v)

showing equivariance of 77, and similarly for r7, O
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Recall Definition 2.12 of the fundamental simplices vg, v1, €1 .

By properties of the G-action on T (see Corollary 2.13), for any oriented edge
(v,v") there exists g € G such that either g(v,v") = (vg,v1) or g(v',v) = (vg, v1).

5.8. Diagrams

Definition 5.8. Let R be a commutative ring. An RG-diagram consists of the
following data:

e A representation of I on an R-module Lg;.
e A representation of Ky on an R-module L.
e A representation of K; on an R-module L;.

e RI-equivariant maps ro : Loy — Lo , 71 : Loy — L1.

We will refer to a diagram as a quintuple (L1, Lo, L1,70,71) , and depict such
a diagram as

Ly

Remark 5.9. The word “diagram” was introduced by Paskunas (Paskunas [20])
in his construction of supersingular irreducible representations of GLa(F) on
finite fields of characteristic p.

Definition 5.10. Let D1 = (LOl,Lo,Ll,T‘o,T’l), D2 = (MOl,M(),Ml,S(),Sl) be
R-diagrams. A morphism of RG-diagrams ¢ : D1 — D5 consists of the following
data:

e An RI-equivariant map ¢g1 : Loy — Mo1
e An RKy-equivariant map ¢g : Lo — My
e An RKj-equivariant map ¢, : L1 — M,

such that ¢g o rg = sg o ¢p1 and ¢ o1 = s1 0 @1, i.e. the following diagram
commutes

/ /
\ \
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The RG-diagrams with the above morphisms form a category, which we denote
by Diagpre.

5.4. Coefficient systems and induced representations

The coeflicient systems on the tree will be intimately connected to certain rep-
resentations of G. For this reason we introduce the following definition.

Proposition 5.11. There is an equivalence of categories between RG-diagrams
and G-equivariant R-coefficient systems, that is Diagpa =~ Coeffrq.

Proof. Consider the functor F': Coeffre — Diagpg defined by

F(E) = (L€01 ’ LU07 Lv1 ) 7”531 ’ 7“5(1’1 )7 F<¢) = ((beol ) ¢v0 ’ ¢U1)

for any G-equivariant R-coeflicient system £ = ({Ls}ocT,{r>}sc+), and any
o= {(ba}acr € MOT@U?ffRG (L, M).

Note that indeed, as K, K1, I are the stabilizers of vq, v1, eg1, respectively, since
L is G-equivariant, we see that L., is an RI-module, L, is an RK(-module
and L,, is an RKj-module. In addition, it follows that the maps 70,701 are

RI-equivariant. It follows that F(£) € Ob(Diagpy). Also, by definition of the
morphisms we see that

€01 — o€01 €01 — o€01
¢U0 ° Tvo - svo o ¢6017 ¢v1 o ’rvl - svl © ¢€01

so that F(¢) € Moroiag,,. (L, M).

Conversely, let D = (L1, Lo, L1,70,71) be an RG-diagram. Let V; = md% (L;)
and let ‘/01 = anjc(L01)

Since we have embeddings Ly C Vy, L1 C V7 and Loy C Vi1, we think of the L;’s
as embedded in the V}’s, so that we have a G-action there, and we can consider
Recall that 7o = TP [[ 74 and for any v € Ty, there exists g € G such that
v = gv;. Weset Lg,, = gL; C V;. For any e € T, there exists g € G such that
e = geo1 and we set Lge,, = gLo1 C V4.

Note that this is well defined, since stabilizers of the v; act on L;, and the
stabilizer of ep; acts on Lg;.

Next, we desribe the G-action. If ¢ C T, either ¢ = gep; or ¢ = gv; for
i € {0,1}. Then either Lyy = Lygey; = (9'9)Ley; = 'L or Lyry = Lyrgy, =
(¢'9)Ly, = ¢'L,, so that the G-action is induced by its action on Vg, V4 and Vo,
as G preserves types.

Also, if 0 C 7, then 7 € 71 , and o € To. In such a case, if 0 € T, there exists
g € G such that 7 = geg; and o = gv;.

We set r; = riior = grig~—', where the G-action is induced by its action on Vy;
and V;. Again, this is well-defined, since r; are RI-equivariant, and [ is the
stabilizer of eg.
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We claim that £ = H(D) = ({Ls }ocT, {1 }ocr) is a G-equivariant R-coefficient
system.

Indeed, since G acts on Vy, V1, Vo1, we have (gh), = gno - ho for all g, h € G and
every simplex ¢ C T, and 1, = id,.

Furthermore, by construction the ry satisty rJ7 o g = g, org.

Also, if ¢ : Dy — D> is a morphism of diagrams, we set ¢q4u, = gu, P: (g_l)(7 if
o =gvi € Ty and ¢ = ge,, ¢01(97")o if 0 = geor € Ti.

We then let H(¢) = {¢s }ocT, and as ¢y © o = go © ¢5, and

—1 -1
nggl °© ¢g€01 = ngj?l 0 Geoy © ¢01 o (g )9601 = Gv; ©5; 0 $o1 © (g )9601 -

= Gv; © ¢p;or;0 (971)9801 = ¢9vi OGv; 0T 0 (971)9601 = ¢gvi ° ng?l
we see that H(p) € Moreocss, (H(D1), H(D3)).

Clearly, F'o H = idpiqg,,,, as I is simply a forgetful functor. Let us shows that
there is a natural isomorphism 7 : H o F' = idgocefi,g, -

To avoid confusion, we will denote by £(g), the G-action on the G-equivariant
R-coefficient system £. Consider the morphism 7, : (H o F)(L£) — L defined by

(n2)gv: = L(g)w, © ((H 0 F)('C))(g_l)gvi

for ¢ € {0,1,01}. This is well defined, since for g € K;, both actions £(g) and
(H o F)(L)(g) coincide with the K;-action on L;. (and I for Loi, respectively).

Moreover, this is an isomorphism, as we have an inverse given by

((H o F)(L))(9)v 0 LIg™")gu,

Furthermore, for any ¢’ € G we have

(12) g7 gv: o (HoF) (L)) (g ) gv, = L(glg)mO((HOF)(ﬁ))(gil)gvi = L(9")v;0(n2) go,
and, denoting by (H o F')(r) the restriction maps in (H o F')(£) we also have
1o 0 (12)geoy = L(9)v, 075" o (H o F)(L))(9™ ) geor = (Me)gv, © (H o F)(r) 55

showing that 7, is indeed a morphism of coefficient systems. Finally, we see
that the diagram

(HoF)(L)X—s L
(HoF)(9) ¢
(H o F)(M)'"2— M
commutes for any ¢ : L — M. Indeed, for any ¢ = gv; C T we have
b0 © (N2)e = bgv, © L()v; © (H 0 F)(L)) (g™ )gu, =

= M(9)v, 000, 0(HoF)(L)) (g™ ) gu: = M(g)n; o(HOF)(¢)y,0((HOF)(L))(g™ ) gu, =
= M(g)v; o ((H o F)(M»(g_l)gvi o (HoF)(#)gv, = (Mm)o o (H o F)(9)s

showing that 7 is a natural isomorphism. O
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The above categorical equivalence in fact suggests the following interpretation
of chains as induced representations.

Lemma 5.12. Let £ be a G-equivariant R-coefficient system on T. Let Ly =
E(Uo), Ll = ﬁ(?]l), and LOl = 5(601). Then

C()(,C) ~ an?{oLO ) ’L.’deg;(lLl, Cl([,) >~ deGLm

as RG-modules. Here ind$,M denotes the compact induction of the R[H]-
module M.

Proof. Let k € {0,1}. For any pointed k-simplex o C 7A7€, and any k-chain w €
Cr(L), welet fy : G — Lo be the function defined by f,..,(9) = g,-1,w(g~ o).

Let K = stabg(o) = {9 € G | go = o}. Then for any k € K
fo,w(kg) = (kg)gflaw((kg)ila) = koggflaw(gilkila) =

=ko gg1,0(g'0) =k fru(g)

Furthermore, w has finite support, say S = supp(w) C Tg. Let SNGo = {gq0 |
a € A} be the elements of S in the orbit of o under G, where g, € G are some
elements. Then A is finite.
It follows that for g ¢ J,c4 Kg5* one has g=' ¢ (J,c 4 9o K, hence g~'o ¢ S.
Indeed, if g~ 1o € S, then there exists o € A with g~lo = g0, hence g, lg~lo =
o and g, '¢g7! € K so that g7! € g, K, contradiction.
It follows that

frw(9) = gg-100(9710) = gg-1,(0) = 0
Therefore f, ., is finitely supported modulo K, hence f,,, € ind% L,.
In addition, one has, under the G-action on ind%’;Lg, for any g,h € G

(gfmw)(h) = fa,w(hg) = (hg)(hg)*law((hg)_l‘ﬂ =

= hhflagg’lhflaw(gilhiloj = hhfla(gw)(hila) = fmgw(h)

so that ¢fsw = fo,q0 for any g € G.
Let us consider the maps ¢q : Co(L) — ind%g Lo® ind%Ll and v : indﬁo Lo®
ind$ Ly — Co(L), defined by

9o (folg™")) o =guo

vo(w) = (foo,ws forw)s  Yol(fo, f1) =0 {gvl(f1(9_1)> o= gu

For any g € G one has
900(9“}) = (fvo,gwa fm,gw) = (gfvo,w7g.fv1,w) = g(fvo,w7fv1,w) = QQPO(UJ)

Therefore g is G-equivariant.
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Conversely, if fy € indf(OLo and f; € indf{lLl, then as they are compactly
supported modulo K, K7, respectively, there exist finitely many elements in
G, {9gataca, {93} pen such that

supp(fo) € | ) Kogar supp(fr) € | Kigs
a€cA BeB

Let S ={g 00 | € A}U{gﬁ_lal | B € B}, and let o € Ty be such that o ¢ S.

If 0 € 70, then there exists g € G such that o = gvg. As o ¢ S, we must have
guo # gilvg for any a € A, so that g71g;t ¢ Ko, hence g~ ¢ Kyg, for any
a € A. Tt follows that g7! ¢ Uaca Koga, and in particular gt ¢ supp(fo).
Thus

Yo (fo, F1)() = vo(fo, J1)(gv0) = guo (folg™")) = 9, (0) = 0

Similarly, if o € 7, then o = gv; for some g € G with ¢g=! ¢ UgepK1gp, hence
gt ¢ supp(f1), so that

Yo(fo, f1)(0) = o (fo, f1)(gv1) = g, (fi(g™")) = 90, (0) =0

In any case, we see that supp(vo(fo, f1)) C S is finite. In addition, for any
o € To, if 0 € T¢ for some i € {0,1}, let g € G be such that o = gv;, then

¢0(f07f1)(0) = gvi(fi(g_1>) € gUiLi = Lgvi = LU

Therefore, we indeed see that ¥o(fo, f1) € Co(L). In addition, for any g € G,
we see that for o = hv;, i € {0,1} and h € G one has

Yo(g(fos f1))(0) = vo(g.fo. 9f1)(0) = ho, ((gf:)(R™))
= ho, (fi(h7'9)) = gg=1hv, - (97 h)o, (fil (g7 h)™H))
= Gg—1hv; - Yo(fo, f1) (g7 hvi) = g(vo(fo, f1) (g7 ")) = (g - o(fo, f1)) (o)

Thus, vo(9(fo, f1)) = g - Yo(fo, f1), showing that 1y is G-equivariant.

Furthermore, for any w € Co(L) and any fy € ind%} Lo, f1 € indfﬁLl we have
for any o = gv; € 7§ (here i € {0,1})

Yo(o(w))(0) = gu, ((vo(@))i(9™) = gu, (fo.(9™)) =

= o, ((g_l)gvi -w(gvi)) = w(gvi) = w(o)

and for any g € G
oo (9) = gg-1u%0(fo, 1) (g7 01) = gg10, - (971),, (fil9)) = fil9)
Therefore f,, yo(fo.5) = fi and
©o(¥o(fo, 1)) = (fuouto(fo.f1)s For o (forfr)) = (fos f1)
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This shows that g, 1y define isomorphisms of RG-modules
Co(L) =~ ind%, Lo ® ind%, Ly

Next, let us consider the maps ¢; : C1(£) — ind?(Lm) and v : ind?Lm —
Cy(L), defined by

Geor (f(g_l)) 0 = g€o1

(pl(W) B feo1,w7 wl(f) B {_geol (f(g_l)) o= geéo1

We have already shown that f.,, ., € ind¥(Lo1). Conversely, if f € ind§ Loy, it
is compactly supported modulo I, hence there exist finitely many elements in

G7 say {ga}aeA such that Supp(f) C U(XGA Iga~

Let S = {g,'€01}aca, and let o € ’fl be such that 0,7 ¢ S. Since G acts
transitively on the set of non-oriented edges 71, there exists g € G such that
either o = geg1 or @ = geps.

As 0,5 ¢ S, we must have geg; # g 'eor for any o € A, so that g~ g ! ¢ I,
hence g=! ¢ Ig,, for any a € A. In particular g~ ¢ supp(f). Therefore

¥1(f)(geor)

o) = {wf)(gem) o=

_ Geor (f(g_l)) 0 = g€o1 _ Geor (0) 0 = YJeor =0
—Yeo: (f(g_l)) 0 = geol —Yeor (0) 0 = Geg,

It follows that supp(i1(f)) C S, hence v is finitely supported. In addition, for
any o € T1, let g € G be such that o = gep; or @ = gep1, then

{gem(f(g‘l)) T = geo

PO S 1) 7= g

E 9601L01 = Lg€01 = L(7

Also, by definition 11 (f)(c) = —¢1(f)(o), hence 1 (f) € C1(L).
For any g,h € G one has

01(9w) = feor,g0 = 9 feorw = 9 1 (W)

D19 F)(heor) = heo (9)(B71)) = hey, (F(h719)) =
= 9g=theor' (97 Peo S((G7R) ) = Gg-theo, U1(F) (g™ heor) = (g-1(f)) (heon)

showing that both ¢ and 9, are G-equivariant.
Furthermore, for any w € C1(£) and any f € ind§ Lo, we have for any o =
geor € T1 that

?ﬁl(@l(w))(ff) = 9601((901((“)))(9_1)) = Geor (fem,w(g_l)) =
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= Geoy ((9_1)9801 -w(gem)) = w(gep1) = w(o)
and for any g € G

femﬂl’l(f) (9) = 9971601¢1(f)(g_1601) = Yg—teps * (9_1) (f(9) = f(9)

€01

Therefore fe,, 4, (r) = f and
e1(¥1(f) = feqronr) = f
This shows that 1,1, define isomorphisms of RG-modules
C1(L) ~ ind¥ Loy
O

Lemma 5.13. Let £ be a G-equivariant R-coefficient system on T. Under
the isomorphisms in Lemma 5.12, the boundary map 0 : C1(L) — Cy(L) is
described as

A([1,lo1]) = ([1,ro(lo1)], [1, —r1(lo1)])
Here, we recall the definition of [g,v], as in (3.3).
Proof. Since ind§ Lo, consists of functions compactly supported mod H, and

G acts by right translations, we see that it is spanned, as an RG-module by
elements of the form [1,1]. Therefore, it suffices to describe 9([1,lo1]).

However, using the morphism 1, in Lemma 5.12, we see that for any o € ﬂ

_ 9601([17l01])(g_1) 0 = géo1
Pi([1,lo1]) (o) = {—gem([l,lm])(g‘l) g =

Geor (97 lo1) o =gep,g€l lor o=¢en
=19 —Geo (g7 - lon) T=geor,g€l =1 —lnn T=en
0 g §é 1 0 0,0 7é €01

So [1,lp1] corresponds to the 1-chain supported on the single edge eg;, hence
O(¥1([1,101])) is supported on the vertices vy, v1 and satisfies

(1 ([1,101]))(vo) = 130" (lo1) = ro(lo1)
(1 ([1,101]))(v1) = rg2* (—lo1) = —71(lo1)
Finally, we see that
([1,l01]) = wo(9(¥1([1,101]))) = ([1,70(l01)]; [1, =71 (lo1)])
O

Corollary 5.14. The boundary map from the oriented 1-chains to the 0-chains
gives an exact sequence of RG-modules

0 — Hy(L) — indf Loy — ind$§, Lo @ ind§ L1 — Ho(L) — 0
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6. Coefficient systems and Integrality

Let F', E and G be as before. Let C be a local non archimedean field of
characteristic 0, with residual field k¢ of characteristic p. Let V' be an irreducible
locally algebraic C-representation of G.

Then by (Schneider et al. [23], Appendix, Thm 1), V = Vi, ®c Va4, where
Vsm is a uniquely determined irreducible smooth representation and Vg, is a
uniquely determined algebraic one.

When F' is not contained in C, in particular when the characteristic of I is p,
we make the assumption that V4 is trivial. We will present a local integrality
criterion for Vi, ® V44, by a purely representation theoretic method, not relying
on the theory of (¢,T')-modules, or on rigid analytic geometry. The idea, due
to Vigneras (Vignéras [29]) is to realise Vi, ® Vo4 as the 0-homology of a G-
equivariant coefficent system on the tree.

We first establish some results concerning the coeflicient systems on the tree.
These will be used to formulate a criterion for integrality.

6.1. Coefficient systems on the tree

Let 7 be the Bruhat-Tits tree of G, and let V = ({V,}ocT, {77 }scr) be a
G-equivariant R-coeflicient system on 7.

Definition 6.1. The combinatorial distance on T is the number of edges be-
tween two vertices. If v,v" € Ty, we denote it by d(v,v").

Remark 6.2. This is well defined, as T is a tree. In fact, this is well defined also
for buildings in general, as explained in (Tits [27]). The following simple lemma
also holds in the general setting, but since our case is quite trivial, we prove it
here as well.

Lemma 6.3. The action of the group G respects the distance.

Proof. Since for any two lattices L,L’, and any ¢ € G, we have L C L' if
and only if gL C gL/, we see that vy,vs are adjacent if and only if gvi, gvo
are adjacent. By induction, since 7 is a tree, we deduce the proposition for
arbitrary distances. O

Definition 6.4. For any integer n > 0, we denote by S,, the sphere of vertices
at distance n from vy and by B,, the ball of radius n. For any chain w # 0, let
n(w) be the integer such that the support of w is contained in the ball By,
and not in B,,(,)—1. That is, we define

B, ={veTy|dv,v) <n}, S,={veT|dv,v)=n}=B,\Bn1
and for w € C;(V), we set n(w) = min{n € Z | supp(w) C B, }.

Remark 6.5. When w is a 1-chain we have n(w) > 1.
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Lemma 6.6. For any vertex v € S,, with n > 1, the neighbours of v belong to
Sn+1 except one neighbour which belongs to S,_1.

Proof. Let wyi,wy € S,—1 be neighbours of v. Then by definition, there exist
paths with no backtracking P; = (vp,...,w;) and P> = (vg,...,ws) of length
n— 1.

Furthermore, they do not intersect, since if P; N Py # (), take p = min{q € P, |
g € P, N Py} and obtain a cycle through vy and p.

It follows that PyuPy ! = (vo,..., w1, v,ws,...,v0) is a cycle. But T is a tree,
hence it must contain backtracking, and as P;, P, are non-intersecting paths,
we must have (wy,v) = (wag,v), so that w; = ws. O

Notation 6.7. Let 7, be the unique oriented edge starting from v and pointing
toward the origin vy.

For any oriented 1-chain w,
Ow(v) = r*w(my) (6.1)
for all v € S, (w)-

For ¢ = 0,1, we identify naturally u; € V; = V,,, with a 0-chain supported on
the single vertex v;. We then consider the natural K;-equivariant linear map

wy - ‘/l — HO(T7V)
and the natural I-equivariant linear maps
’IU()OT‘():Vbl—>Vb—>[i[()(7—,V)7 ’w107“1:‘/b1—>‘/1—>H0(T,V)

Lemma 6.8. If both ro, 71 are injective, then:
1. the maps wg,wy are injective.

2. wgorg=wiory is I-equivariant.

Proof. There is no non-zero 1-chain w with dw supported on the single vertex
vo because n(w) > 1 and dw is not zero on S, by (6.1) because ro,r; are
injective. It follows that there is also no non-zero 1-chain w with dw supported
on the single vertex vy. As both w; and r; are I-equivariant, we have trivially the
I-equivariance. Explicitly, if we consider w, the oriented 1-chain with support
eo1 such that w(vg,v1) = ugy for some ugy € Vp1, then we see that dw is such
that Ow(vg) = ro(ug1) and dw(v1) = —r1(ue1), so that Ow = wg—w1, where wy is
the 0-chain with support v; and value r1(ug1) and wy is the 0-chain with support
v and value ro(ug1). This shows that w; o1 = wq o g, as their difference is a
boundary. O

When 0 is injective, we must have kerrg Nkerr; = 0. Indeed, else let u €
ker rog Nkerry, and take w to be the 1-chain supported on ep; with w(egr) = w.

By the formula (6.1) the converse is slightly weaker.
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Lemma 6.9. 0 is injective if both ro,r1 are injective.

Proof. Let w # 0 be any oriented 1-chain and let v € S,,(,,); the edge 7, belongs
to the support of w. By the formula (6.1), dw(c) = r7vw(7,) does not vanish.
Indeed, as the G-action is transitive on each type, there exists g € G such that
gup = v or gv; = v and g(vg,v1) = 7, (or —7y,), whence either

0 =r]"w(u) = 190" © geg, (Gonr w(T0)) = Guo - 750 (gohw(70)) = g - To(9™  w (7))
or

0 =176 (Ts) = 1900 © Gegy (o0, W (7)) = Go T3 (gequw(70)) = g - 1.(g™ w(T))

But this implies (as the G-action is linear) that either ro(g~'w(r,)) = 0 or
r1(g7'w(7,)) = 0, whence by injectivity of ro and 71, g~ 'w(r,) = 0, hence

w(1y) = 0, contradiction. O

We suppose from now on that the maps r; : Vo1 — V; are injective.

Proposition 6.10. (Descent) Let ¢ # 0 be a 0-chain not supported only at the
origin. There exists an oriented 1-chain w such that n(¢ — 0w) < n(¢) if and
only if p(v) € r]»Vy, for all v € Sp(g).

Proof. Let w be an oriented 1-chain. By the formula (6.1), n(¢ — 0w) < n(¢) is
equivalent to n(w) = n(¢) and

P(v) = rirw(Ty)

for all v € Sp(). When the necessary condition ¢(v) € r]*V;, is satisfied,
say ¢(v) = rjv(v,,) for some v, € V, for all v € S, (4, the oriented 1-chain
wg supported on Uvesn(¢> T, with value v, on 7,, satisfies n(¢ — dw) < n(¢p).
The oriented 1-chains satisfying n(¢ — 0w) < n(¢) are wy + w’ where n(w’) <

n(¢) — 1. O

When the R-module 7¢(Vp1) has a complement in Vy, say Vy = Wo®re(Vo1), and
v is of type 0, then the R-module 7]v(V;,) has a (non canonical) complement in
Vo, say V,, = W, @17 (V,); Similarly, for v of type 1, when the R-module r1(Vp1)
has a complement in Vi, say Vi3 = Wy @ r1(Vo1), and v is of type 1, then the

R-module 7] (V) has a (non canonical) complement in V,.

We can find an oriented 1-chain w supported on 7, such that (¢ — dw)(v) € W,
for any v € S, (4). By induction on n(¢), any nonzero element of Hy()) has a
representative ¢ either supported at the origin, or such that ¢(v) € W, for any
v € Sp(g)- (In fact, for all v).
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6.2. Integrality local criterion

Let us first define what does it mean for a representation of G to be integral.

Proposition 6.11. Let R be a complete discrete valuation ring of fraction field
S. An S-representation V. of G of countable dimension is integral if it admits
a basis generating, over R, a G-stable R-submodule, L of V. L is called an
R-integral structure.

We will now use the machinery of coefficient systems on the tree, as described
so far, to obtain a necessary and sufficient criterion for the integrality of the
representation Hy(V), for some coefficient systems V.

Definition 6.12. Let R be a complete DVR, and let S be its fraction field. Let
L={Ls}ocT,{rr}ocr) be a G-equivariant R-coefficient system, and let) :=
LRRS, rs; =1 ®rids : Vo1 — V; for i € {0,1} be the corresponding G-
equivariant S-coefficient system. Let ¢ € {0,1}. We say that a chain w € C;(V)
is integral if w € C;(L) C Ci(V).

By Lemma 6.8, the natural RKy-equivariant map wg : Ly — Ho(L) and the
natural RKj-equivariant map wy : L1 — Hy(L) are both injective, and the
natural map

wporg=wyory: Loy — Ho(L)
is I-equivariant.
We use this result to formulate and prove the following criterion, which is just

a slight variation of the criterion due to Vigneras (Vignéras [29]), and the proof
is essentially the same.

Proposition 6.13. 1) Hi(L) = 0 if ro and r1 are both injective. Conversely,
if Hi(L) =0, then kerrg Nkerry = 0.

2) Integrality Local Criterion:

Suppose that

- R is a complete discrete valuation ring of fraction field S,

- Lo, Ly are free R-modules of finite rank,

- ro,T1 are both injective,

and let V := LRRr S, rs,i :==1; Qr ids : Vor — V; fori € {0,1}.

Then, the map Ho(L) — Ho(V) is injective, hence the R-module Ho(L) is
torsion-free and contains no line S - h for h € Hy(V), when the equivalent
conditions are satisfied:

a) rs,0(Vo1) N Lo =1o(Lo1) and rs,1(Vor) N L1 = r1(Lo1),
b) the maps ‘/01/L01 — Vo/Lo, VOl/L01 — ‘/1/L1 are both injective.

¢) ro(Lo1) is a direct factor of Ly and r1(Lo1) is a direct factor of L1, as R-
modules.
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Proof. of Proposition 6.13

1) By Lemma 6.9, 0 : C1(£) — Co(L) is injective if r; : Lyy — L; are both
injective. However, H; (L) = ker 0, hence we are done.

2) As rg, 71 are injective, we can reduce them to inclusions Lo; — Lo, Lo1 — L1,
and rg,7g,1 are inclusions Vo1 — Vo, Vo1 — V1.

Equivalence of the properties a), b), ¢):

Note that Vo1 N L; = Loy <= ker(Voy — Vi/L,) = Lo1 < Li/Lo, is torsion-

free <= Ly is a direct factor of L; (since L; is a free module of finite rank over
the PID R).

We now turn to prove the conclusion:
The R-module Hy(L) embeds in the S-vector space Hy(V) because the maps
Voi/Lo1 — Vi/L; are injective by b) hence Hy (V/£) = 0 by 1) and the sequence
Hy, (¥Y/c) — Ho(L) — Hop(V) is exact.
Let h be a nonzero element of Hy(L). Suppose that the line Sh is contained

in Ho(L). We choose a generator, x, for the unique maximal ideal in R, and
choose

- a representative ¢ € Cy(L) of h such that ¢ is supported on vy or such that
p(v) € W, for any v € Sy

- a vertex v' € S,,(4) such that ¢(v") # 0.

- an integer n > 1 such that ¢(v') & ™ L,.

Since S+ h C Hy(L), there exists an integral oriented 1-cocycle w € C1(L) such
that (¢ + Ow)(v) € 2™ L, for any vertex v € T.

We may suppose n(w) < n(¢) by the following argument.

If n(w) > n(¢), the formula (6.1) implies that w(r,) € ™ L(7,) for any vertex
v € Sp(w) because v L., Na™L, = r»(z"L;,) by a) and the injectivity of r]v.
Let weq¢ be the integral oriented 1-cocycle supported on |J, o Sp(w) Tv and equal
to w on this set. We may replace w by w — Wegt; as n(w — wegt) < n(w) we
reduce to n(w) < n(¢) by decreasing induction.

If ¢ is supported on vy, then w = 0 and ¢(vy) € x™ Ly which is false.

If ng > 1, we have ¢(v)+w(7,) € 2™ L, for any v € S,,(4) by (6.1). As ¢(v) € W,
and w(7y,) € 77 (V,), this is impossible.

As R is a local complete PID, Hy(L) is R-free. O

Lemma 6.14. Let ¢ be a 0-chain supported at the single vertex vy and let w be
an oriented 1-chain such that ¢ + Ow is integral. Then ¢ is integral.

Proof. As n(w) > 1, the restriction of w on S, is integral by (6.1). By a
decreasing induction on n(w), ¢ is integral. O

Corollary 6.15. When the properties of 2) (in Proposition 6.13) are true,
Ho(L) is an R-integral structure of Ho(V) such that

Ho(L)NVy = Lo, Ho(L)NVy =1Ly
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The corollary in fact shows that the above criterion is sufficient for Hy(V) to
be integral, where V = L ®r S. Next, we establish a necessary and sufficient
criterion.

Corollary 6.16. Let R be a complete discrete valuation ring of fraction field
S, and let rq : Vo1 — Vo, r1 : Voo — Vi be the maps in the RG-diagram
corresponding to a G-equivariant R-coefficient system V. The S-representation
Hy(V) of G is R-integral if and only if there exist R-integral structures Lo, Ly
of the representations Vo of Ko, Vi of K1, such that Loy = To_l(Lo) = NL) .

When this is true, the diagram

Lo
e
Lo
X

Ly

defines a G-equivariant coefficient system L of R-modules on X, and Ho(L) is
an R-integral structure of Ho(V).

Proof. of Corollary 6.16

Sufficient. When Ly, L, are R-integral structures of Vj,V; such that Ly; =
7“0_1(L0) = rl_l(Ll), then Lg; is an R-integral structure of Vj1; the maps rg,rq
induce an injective diagram

By the integrality criterion (Proposition 6.13), Ho(V) is R-integral.

Necessary. Suppose that L is an R-integral structure of Hy(V). We apply
Lemma 6.8. The inverse image Lo of wo(Vp) N L in Vj by wyp is an R-integral
structure of the representation of Ky on Vj, the inverse image Ly of wq (V)N L
in Vi by w; is an R-integral structure of the representation of K; on Vj, and
the inverse image Loy of (wgorg)(Vor) N L = (wy 0r1)(Vo1) N L is an R-integral
structure of V1, such that Lg; = ral(Lo) = rfl(Ll). O

From now on, ro, 7 are injective and Vo = Ko - r0(Vo1), Vi =Ky -7r1(Vo1).

Definition 6.17. When V;, for ¢ = 0,1 identified with an element of Z/27Z,
contains an R-integral structure M; which is a finitely generated R-submodule,
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one constructs inductively an increasing sequence of finitely generated R-integral
structures (2™(M;))n>1 of Vi, called the zigzags of M;, as follows:

The RKiH—module Mi+1 defined by Mi+1 = Ki-i-l *Tit1 (’I“Z_l(Ml)) is an R-
integral structure of the SK; i-module V;y; (a finitely generated R-module is
free if and only if it is torsion free and does not contain an S-line). We repeat
this construction to get the first zigzag z(M;):

Z(Mz) = Kz Ty (Ti_Jrll (Ki-i-l . Ti—i—l (’I‘Z_l(MIL)))) 2 MZ

Corollary 6.18. Let i € Z/27 and let M; be an R-integral structure of the
SK,;-module V;. The representation of G on Hy(V) is R-integral if and only if
the sequence of zigzags (2" (M;))n>0 is finite.

Proof. of Corollary 6.18

When the sequence of zigzags is finite, there exists a finitely generated R-integral
structure M; of V; equal to its first zigzag z(M;) = M;, for t =0 or i = 1. Set
My =71 (r; 1 (M;)). By definition of z(M;), we see that

Mi = Z(MZ) = K1 T (T‘i:_ll (Ki+1 . Mi+1)) or; (T’i:_ll (Ki+1 . Mi+1))

hence
Mipr =rig1 (r; ' (M;)) D Kigq - Migq

showing that M; 1, C V41 is K;41-stable, hence a finitely generated R-integral
structure of V; 1, such that ri]_ll (Miy1) = r;l(MZ-).

Conversely, let M; be an R-integral structure of V;. Replacing L by a multiple,
we suppose M; C L;. Then ri_l(Mi) - ri_l(Li) = ri_+11(Li+l)7 hence K; 1 -
Tit1 (r;l(Mi)) C Liy1 and z(M;) C L;. The sequence of zigzags of M; is
contained in L; and increasing, hence finite because L; is a finitely generated
R-module and R is noetherian. O

6.3. Integrality criterion for locally algebraic representations

The main idea allowing us to make use of the above criterion for arbitrary
irreducible locally algebraic representations, is the fact that any such represen-
tation can be obtained as the 0-homology of some coefficient system on the tree.
This was shown for smooth representations over C by Schneider and Stuhler in
Schneider and Stuhler [21], and we will extend the result further here. The
proof is the same as in Vignéras [29] for the case G = GLo(F).

In order to formulate the results, we will use the filtrations previously described
of the stabilizers (see subsection 2.3).

Lemma 6.19. We have group homomorphisms:
When E/F is unramified

Ko/ko(1) ~ Us(kp), Ki/k,()~H(kp), 1/1(1)~M(kp)
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while for E/F ramified we have

Ko/Ko(1) ~ Og(kp), Ki/ki()~H (kr), I/1(1)~ M (kp)

and further bijections, when E/F is unramified
BN Ko\Ko/Ko(1) ~ B(kp)\G(kr)
BN EKi\K:1/K:(1) ~ M(kp)Z(kr)\H(kp)
and when E/F is ramified
BN Ko\Ko/Ko(1) = B (kr)\Os (kr)
BN K \K1/Ki(1) =~ M'(kr)Z'(kr)\H' (k)

Here G(krp) = Us(kp) = {9 € GL3(kg) |* g0g = 6} is the unitary group
in three variables, O3(kr) = {g € GL3(kr) |' g8g = 0} is the corresponding
orthogonal group in three variables, B(kr),B'(kp) are the Borel subgroups of
upper triangular matrices in Us(kp), Oz(kr), respectively, M(kp), M’ (kr) the
corresponding Levi qoutients, and

a 0 b
H(kp) = 0 ¢ O |c€k,15, aﬁ,béekg, ge+db=1 < G(kp)
d 0 e
a 0 b
H’(kF): 0 1 0 |ad —bc=1 ) < Os(kr)
c 0 d
1 0 =z
Z(kF): 0 1 0 |Z€]€E, z+z=0
0 0 1
1 0 =z
Z/(kp>: 01 0 |Z€kF
0 0 1

Proof. We have natural maps Ko — Us(kp), I — M(kp) in the unramified
case, and Ky — Os(kr), I — M/(kp) in the ramified case, by reducing each
entry mod wOp, and zeroes above the main diagonal in the latter map. Further
we have a map p : K1 — H(kp) in the unramified case, or p: K1 — H'(kp) in
the ramified case defined by

a b 7l a mod 7 0 ¢ mod T
pl|l wd e f = 0 e modm 0
g wh 1 g mod 7 0 i mod

Note that Ko(1),I(1) and K;(1) are precisely the kernels of these surjective
maps to obtain the required result.
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For the bijections, note that B N K is the preimage of B(kr), B’(kr) under
the reduction maps Ko — G(kr), Ko — Os(kr), while BN K; is the preimage
of M(kp)Z(kr), M'(kr)Z'(kr) under the reduction maps K1 — H(kr), K1 —
H' (kFr). O
Proposition 6.20. Let Vy, be an irreducible algebraic C-representation of
G (hence E C C if Vyyg is not trivial), let Vs, be a finite length smooth C-

representation of G and let e be an integer > 1 such that Vi, is generated by
its Ko(e)-invariants.

1) The locally algebraic C-representation V := Vi, @c Vaig of G is isomor-
phic to the 0-th homology Ho(V) of the coefficient system V associated with the
inclusions

‘/517(710(6) Q¢ Valg

/

VSI’V‘Sle) Qc Valg

T

Vts‘lrizl () Rc Valg

2) The representation of G on V is Oc-integral if and only if there exist O¢-
integral structures Lo, Ly of the representations of Ky, K1 on Vsjf,{’(e) ®c Vag,

sﬁl(e)(@c Vaig respectively such that Loy := Loﬂ(VSITSf)Q@C Vaig) = L10( slm(,e) Qc

Vaig). Then the 0-th homology L of the G-equivariant coefficient system on X
defined by the diagram
Lo

Lo,
Ly
is an O¢-structure of V.

Proof. of Proposition 6.20

1) The exactness of the sequence

0 — indS (v;f,;@ ®c Valg> — ind$, (Vgﬁ;’(e) ®c Valg) &ind§, (VJ;I@ ®c valg) -
— Vsm Ko Valg —0
follows from the following facts.

The assertion is true when Vg4 is trivial if C'is replaced by the field C of complex
numbers by (Schneider and Stuhler [21] I7.3.1); This is also true for C because
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the scalar extension ®C commutes with the invariants by an open compact
subgroup and with the compact induction from an open subgroup. The tensor
product by ®cVag of an exact sequence of C'G-representations remains exact
and commutes with the compact induction from an open subgroup.

2) The finite length representation Vi, is admissible; this is known for complex
representations and remains true for C-representations because V., ®c C has
finite length (Vignéras [28] I1.43.c), and - ® ¢ C commutes with the K;(e)-

invariant functor. The C-vector spaces Vg{f{(e) ®c Vaig are finite dimensional.
Apply Corollary 6.16. O

We have Lo = LN(VEY© @ V) and Ly = LN (1/;521(6) ® valg) in 2) by Lemma

6.14; when ( 315{)(6) ®c Vaig) = Ko - (‘/Sl'fgle) ®c Vaig) and ( slr{nl(e) ®c Vaig) =

K- (V#) ®c Vaig), one can suppose Lo = KoLg1 and Ly = KiLg; in 2) by
Corollary 6.18.
We define the contragredient V = Vim Qc Va,lg of V = Vg, ®c Vaig by tensoring

the smooth contragredient Vsm of Vi, and the linear contragredient Va/l g of Vaig.

Corollary 6.21. A finite length locally algebraic C-representation of G is O¢-
integral if and only if its contragredient is O¢-integral.

Proof. of Corollary 6.21

Let Vi, be a nonzero smooth C-representation of G of finite length; there
exists an integer e > 1 such that each nonzero irreducible subquotient of Vi,
contains a nonzero K;(e)-invariant vector, by smoothness. The C-vector space
- Ki(e) . !

(Vsm) is isomorphic to the dual ( 315{(6)) ; the irreducible subquotients of
the contragredient Vem are the contragredients of the irreducible subquotients
of Vg Hence Vi, and Vi, are generated by their Ky(e)-invariants.

Suppose that V = Vi, ®c Vayg is Oc-integral. We choose Oc-integral struc-
tures Lo of the representation of Ky on VSﬁO(E) ®c Vaig and Ly of the repre-

sentation of K on Vsjfnl(e) ®c Vaig such that Lo; := L1 N (VSIn(f) Rc Valg> =

Lo N (Vsln(f) Rc Valg) (Proposition 6.20), and we take the linear duals LE) =

Home,. (Lo, O¢) of Ly and Ly = Home,.(L1,O¢) of Ly. Tt is clear that L, is
an Oc-integral structure of the representation of K; on

’ ’

/ - K (e)
(Vvsi%(e) ®c Valg) =~ (‘/SI;Z(&)) Kc (Valg) ~ (%m)

®c Va,lg
. VY SN (O ' o (1@ '
We take the intersection L, N (Vsm> ®c Vg, | = LN ( sm Q¢ Valg)

The Oc-module Loy is a direct factor of Ly and Ly, hence its linear dual Lé)l is
equal to this intersection. By Proposition 6.20, V is Oc-integral. O
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From now on, we assume V,;, = C, i.e. the algebraic part is trivial, and the
representation is smooth.

We conclude this part by considering inflations of diagrams.

Definition 6.22. A tamely ramified diagram is a diagram D = (Lg1, Lo, L1,70,71)
such that

e Ky(1) acts trivially on Ly.

e K;(1) acts trivially on L;.

e (1) acts trivially on Lo;, and it is semi-simple as an SIT-module.
e 1o, 71 are injective.

Lemma 6.23. A tamely ramified diagram is equivalent (by “inflation”) to the
following data if E/F is unramified:

e an R-representation Yy of Ug(kp).

e an R-representation Y; of H(kp).

e a semi-simple R-representation Yy, of M(kp).

e RM(kp)-inculsions Yo; — Yj and Yy — Y7 with images contained in
YON(kF ) and le(kF ) respectively.

and to to the following data if F'/F is ramified:

e an R-representation Yy of Oz(kr).
e an R-representation Y; of H'(kp).

e a semi-simple R-representation Yy; of M/(kp).

RM' (kp)-inculsions Yy, — Yy and Yy — Y7 with images contained in
YON *r) and le (k) respectively.

The action of Ky on Lj inflates the action of Yy, the action of K; on L; inflates
the action of Y7, the action of I on Lg; inflates the action of Yp;.

Here,

z
b | [20+22=0, bz€kpp <Oz(kr)

1
Nl(kp) = Np,z = 0
0 1

S = o

is its unipotent radical. If p # 2, z = —b%/2, and we denote ny = ny, .. Ilf p =2,
then b = 0.

Proof. This is an immediate consequence of Lemma 6.19. O
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7. Integrality of principal series representations

We will make explicit the integral structures contsructed in Proposition 6.20,
when V = Vj,, is a smooth tamely ramified principal series representation.

When x ® x; is tamely ramified, i.e. trivial on M N1I(1), its restriction to M NI
is the inflation of a C-character n ® n; of M(kr), and the principal series is
the 0-th homology of the G-equivariant coefficient system defined by the tamely
ramified diagram

(ind$ (x ® x1)) "

/

(ind$ (x ® x1))""

I

(ind$(x @ x1)) Y

inflated, in the case of E/F unramified, from the inclusions (see Lemma 7.2)

G(kr)

B(kr) (n@m)

N(kr)
) — ind

. G(k
(anB((k;j)) (7] & 771)

Z(kr)
. H(kr) . H(kr)
(i ey (1@ m0)) ™ = i, (1 m1)
and in the case of F/F ramified, from the inclusions (see Lemma 7.2)

Os(kr)

N'(kr) )
) — mdB,(kF) (n®m)

. ,03(k
(mdB?((k = em)

)Z'(’fF)

CH(k H(k
(”ﬁLdM’((kI;))Z'(kp)(77 ® ) — mdM/((kFF))Z/(kF) (n®@m)

. G(kr) N(kr)
Note that (mdB(kF) n® 771)> =C-p18C- ¢, , where ¢1, ¢ have supports
B(kr), B(kr)sN(kr) and value 1 at id, s, respectively. Clearly,

Yo1:= Oc - 1@ Oc - s

G(kr)

is an O¢-integral structure of (indB(kF) (n®@m)

)N(kp) and

Vi i=H(kp) Yo1, Yo:=G(kp) Y2k

are Oc-integral structures of ind?a((]ZZ))z(kF)(n ® 1) and mdg((:i)) (m®@mn).
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Simi  Os(kr) N'(kr)
imilarly, note that mdB,(kF) (n®m) =C-¢p1®C - ¢y, where ¢1, ¢

have supports B'(kr), B'(kr)sN’(kr) and value 1 at id, s, respectively. Clearly,

Yor :=0c¢ - 91 ® Oc - ¢,

)N'(kF) and

is an O¢-integral structure of (indg?((:;)) (n®@m)
Y1 = H/(k'F) . YOla YO = 03(](1}7') . Yozl (kr)
are O¢-integral structures of indl\H/[/,((’Z))Z,(kF)(n ®mn1) and mdg,/((:ﬁ)) (n®@mn).

Now (Yp, Y1, Yp1) inflates to a tamely ramified diagram

Ly, = Ko - Ly,,
LY01
Ly, = K; - Ly,

defining a G-equivariant coefficient system L of free O¢-modules of finite rank

onT.

7.1. Integrality criterion for smooth principal series representations

In this section we will prove the following theorem -

Theorem 7.1. Suppose that the character x ® x1 is tamely ramified, and that
C contains a p-th root of 1. The following properties are equivalent:

a) the principal series representation ind%(x ® x1) is Oc-integral.

b) x L(m), x(7)q® are integral.

c) YON(kF) =Yy = le(kF), when EJF is unramified, while YON/(kF) =Yy =
lel(kF) when E/F is ramified.

d) L := Ho(L) is an Oc-integral structure of ind%(x @ x1)-

When they are satisfied, we have L¥o(1) = Ly, , LK) = Ly, and LI = Ly,
generates the OcG-module L.

Note that we may reduce to the case y; = 1, twisting by a central character.
Hence, it suffices to assume x tamely ramified and y; = 1.

As x is a tamely ramified character, n = x [Og is the inflation of a character of
Fy = kx ~ O5/(1+70g), that we denote by the same letter, 7).

We will also denote x(7) = A, so that y(z) = AU@) . (zr=?#(®)) where vg is
the standard valuation on F (normalized such that vg(7) = 1).
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Lemma 7.2. Let x : EX — C be a tamely ramified character. It induces a
character n: Ff — C. We have, when E/F is unramified,

. Ko(1) o, . JUs(k . Ki(1) o . H(k
(zndgx) 0 :mdB(?’lgFg)n, (zndgx) :anM((k};))Z(kF)n

and when E/F is ramified,

. Ko(1) o, . ;05(k . Ki(1) o . H'(k

(indGx)"" :mdB,“"((klf))n, (ind%x) :mdM,((ki))Z,(kF)n
Proof. As G = BKy = BKj, by the Iwasawa decompositon (Lemma 2.17), we
see that

(angX) rI(oZ indg?][(onv (angX) rK12 ang(lTIﬁn

. . K . K .
and the representations of K, K1 on (zndgx) o) , (md%x) 1) , respectively,
are the inflations of the principal series representations (see Lemma 6.23)

G(kp)  H(kr)
indg )My ANz (k)]

when E/F is unramified, and inflations of the principal series representations

 Os(kr) _H (kp)
Mgy 1 N G2 (k)T

when E/F is ramified. O

In what follows we will introduce the set-up for our proof.

We construct explicit integral structures in V, = (indgx)KO(l), = (indgx) Kl(l),

)1(1)

and compute their preimages in Vj; = (indgx
We will begin our zig-zag by considering the natural choice of an integral struc-

ture in Vp = (indgx)KO(l).

7.1.1. The integral structure Lg

Let Ly be the O¢-integral structure of the C-representation of Ky on Vy =
Ko(1)

(indg% KOn) ’

We denote by f, € Lo the function of support (B N Ky) gKo(1) and value 1 at

g.

When E/F is unramified, a system of representatives for B N Ko\ Ky/Ko(1) ~
B(kr)\G(kF) (see Lemma 6.19) is

given by the functions with values in O¢.

0 01
1,sn forn e N(kp), s=| 0 1 0
1 00

as follows from the Bruhat decomposition G(kr) = B(kp) [[ B(kr)sN(kr).
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When E/F is ramified, a system of representatives for B N Ko\Ko/Ko(1) ~
B'(kr)\Os(kr) (see Lemma 6.19) is

1,sn for n € N'(kp)

as follows from the Bruhat decomposition Og(kr) = B'(kr) [[ B/ (kr)sN'(kp).

Therefore, an O¢-basis of Lg is {fl, (fsn)neN(kp)} when F/F is unramified,

and {fl, (fsn)neN/(kF)} when E/F is ramified. Note that for any n; , € N(kp)

we have N
z B 1 —b

10 zZ
mi=01 b | =[0 1 b |=n,;:
0 0 1 0 0 1

Similarly, in the ramified case, nb_l =n_p and when p =2, n; ! =n,.

In what follows, if E/F is unramified, we will denote by pg : Ko — G(kr) and
p1: K1 — H(kp) the two natural reductions, while if F/F is ramified, we will
use the same notations, only that pg : Ko — O3(kr) and py : K1 — H'(kp).

The following property of Ly will turn useful when computing its zig-zag.

Proposition 7.3. The OcKy-module Lq is cyclic, generated by f1, i.e. Lo =
OcKo - fi1-

Proof. For all n € N(kp), and all g € Ky, one has

nsfi(g) = fi(gns) = {X(gns) po(gns) € Bkp) _

0 else

{X(QHS) po(g) € B(kp)po(sn™) _ fon-1(9)

0 else

so that

'flel = fsn*l
for all n € N(kr). In particular, f,, = n"'s- fi € OcKy - fi for any basis
element, establishing the proposition when E/F' is unramified.

When E/F is ramified, we obtain similarly that fs, =n"'s-f; € OcKy- fi for
any n € N’(kp), finishing the proof. O

)1(1) _yia

We next describe the intersection of Lo with Vp; = (indgx 0

Lemma 7.4. A system of representatives for I1(1)/Ky(1) is N(kp) when E/F
is unramified, or by N'(kp) when E/F is ramified. Thus, a basis of Lé(l) is

given by
flv Z fsn

neN(kr)
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in the former case, and by

fla Z fsn

neEN’ (kr)

i the latter.

Proof. Consider the natural reduction map p : Ko — Us(kr), when E/F is
unramified, and p : Ko — O3(kr) when E/F is ramified.

Then Ko(1) = ker p, showing that I(1)/Ko(1) ~ p(I(1)). However, I(1) =
p 1(N(kr)) when E/F is unramified, while I(1) = p~!(N’(kr)) when E/F is
ramified.

This establishes the first claim.

It follows that in both cases

B-I(1) = J BnKy(1) = BEy(1)

and
BsI(1) = | J BsnKo(1) = [ [ BsnKo(1)

Let ¢1,¢5 € Vo1 = (indgx)l(l) be the functions with supports B - I(1) =
B - Ky(1), BsI(1) and value 1 at 1, s respectively.

As I(1) =[], nKo(1), and ¢,(sn) = ¢(s) = 1, we see that ro with respect to
the above bases is

ro(¢1) = f1, T0(ds) =D fen (7.1)
n
and the result follows. ]

We also have a corresponding integral structure in V; = (indgx) K ) , which
we now introduce.

7.1.2. The integral structure L
Let L; be the O¢-integral structure of the C-representation of Ky on Vi =

. Kl(l)
(mdlB%Kln)
We denote by hy € Ly the function of support (BN K1) gK7(1) and value 1 at
g.
When E/F is unramified, a system of representatives of B N K1\K;/K1(1) ~
M(kp)Z(krp)\H(kr) (see Lemma 6.19) is

given by the functions with values in O¢.

7T_1

0
1 0
0 0

1,tz for z € Z(kp), t=

3 o o

by the Bruhat decomposition H(kr) = M(kp)Z(kr) [[ M(kr)Z(kr)sZ(kr).
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When E/F is ramified, a system of representatives of B N K1\K;/K;(1) ~
M'(kp)Z' (kp)\H'(kFr) (see Lemma 6.19) is

{1 t2} ez (hp)
Therefore, an Oc¢-basis of Ly is {h1,h.}.czp, if E/F is unramified, and
{h1,hiz} ez iy if E/F is ramified.
Proposition 7.5. The Oc Ki-module Ly is cyclic, generated by hy, i.e. L1 =
OcK1 - hy.
Proof. For any z € F and any g € K1, one has

“1,t ~1,t) € M(kp)Z(k
no,r-1,th1(g) = h1(gng-1,t) = {())((gnom ) glls(;qno’” :t) € M(kr)Z(kr) =

_ {X(gno,ﬂlzt) pilg) € Mkr)Z(kr)pr(tnoz) _y )

0 else
since M(kp)Z(kp)p1(tng--1,) = M(kr)Z(kr)p1(tng r-1z). Thus

nO,Tr_lzthl = htno’_ﬂ,lE
q>
Oc¢K; - hy, showing the proposition when F/F is unramified.

for € F; . In particular, for all z € F_, one has htng,flz = ng -1zth; €

Similarly, for any z € F, and any g € K, one has

B B hﬁ/ Z/
no ostha() = hl(gnoywlzt):{x@nom 1) prlgnoaiat) € M (k)2 (kp) _

0 else

(9)

z

_ I x(gnoq-1:t) pi(g) € M/<kF)Z/(k;F)p1(tn(I;—1z) _
0 else 0, —w—1
since M’(kF)Z’(kF)pl(tngi_lz) =M'(kp)Z' (kp)pi(tng r-1z). Thus
noﬂr—lzthl = htno a1,

But hy = thy, hence hy = thy, thus establishing the proposition. O

Lemma 7.6. A system of representatives for I(1)/K;(1) is (sno’ms)zqu_ when

E/F is unramified, and (sng x.5).cr, when E/F is ramified. Thus, when E/F
is unramified

ri(d) =h+ D W) hun, s i) = AT Iy
yeFy

and when E/F is ramified,

ri(é1) = h1 + Z n_l(y) . htnoﬁfly, ri(gs) = A7y

y€Fq
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Proof. Note that when FE/F is unramified, one has
I()/K1(1) =~ K/ 1)\ Er /K, (1) ~ M(kp)Z(kp)\H(kFr)

so by the Bruhat decomposition H(kp) = Z_(krp)M(kr)Z(kr), we see that
(sno’ms)zqu_ is indeed a system of representatives for I(1)/K;(1).

When E/F is ramified, one has
I(1)/ K1 (1) = 8/1a)\K/ K1 (1) = M (kp) Z' (kp) \H (kr)

so by the Bruhat decomposition H'(kp) = Z_ (kp)M'(kp)Z (kr), we see that
(810,725)¢F, is indeed a system of representatives for I(1)/K1(1).
Further, we have for any 0 # z € Fy, that

1 0 0 —z b 0 71 0 0 7t
5N0,7z8 = 0 1 0 = 0 1 0 01 O =
7z 0 1 0 0 z m 0 z7!
—z b 0 71 0 0 nt 1 0 w1tz
= 0 1 0 01 0 0 1 0 € Btng 1,1
0 0 =z = 0 O 0 0 1

It follows that when E/F is unramified, one has

B-I(1)= |J Bsnoa.sKi(1)=PK;(1)U [ |J Btngr—1.K1(1)
2€F; 0#£z€Fy

and

BsI(1) = BsKi(1)U | | J Bnos:sKi(1) | = BsKi(1)
0#£z€F,

while if E/F is ramified, one has

B-I(1) = | BsnosK1(1) = BK1()U | | Btngr1.K1(1)

z€F, 0#z€l,
and
BsI(1) = BsKy(1)U | | J BnorsKi(1) | = BsKi(1)
0#z€F,

Moreover

z7b o ot 1 00
P1(tng r-12) = ¢1 0 1 0 0 10 =

0 O z 7z=b 0 1
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1\ ()  E/F unramified
=Xz )_{171(2) E/F ramified

here we use z = —Z.
It follows that, when E/F is unramified

ri(¢1) = hi + Z () - hing s,

S

where we extend n* to F,” such that *(0) = 0. When E/F' is ramified, we have

ri(é1) = h1 + Z 07 Y)  heny o,

yEFq
= 0 0
It is convenient to write t = sp = spss = p~'s where p = 0 1 0
0 0 7!
Then it is easy to see that
¢s(t) = ds(p™'s) = x(071) - ds(s) = x(p™1) = A7
showing that ri(¢s) = A" Lh,. O

Now that we have explicit description of rg,r; in terms of bases, we proceed
with the construction of zig-zags, as in Corollary 6.18 to prove Theorem 7.1.

7.2. Proof of Main Theorem
7.2.1. Proof of the criterion

We will prove the theorem one step at a time. Begin with the following propo-
sition, establishing necessity of one of the conditions.

Proposition 7.7. Let x : E* — C be a tamely ramified character, such that
ind$x is integral. Let A = x(m). Then A\=! € O¢.

Proof. We proceed with the notations from the previous section.
Consider Ly = O¢f1 + ZnEN(kF) Oc¢ fsn when E/F is unramified or Ly =

OCf1+ZneN’(kp) Oc¢ fsn when E/F is ramified. Then ral(LO) = 0cp1DO0c s,
hence )
Ll = Kl T (’I“O_l(Lo)) = OC’KI . Tl(d)l) =+ Ailoctht

By Proposition 7.5, we know that L1 = O¢ Ky hs. Therefore, if E/F is unrami-
fied,
ri(@) =hi+ Y 0 ®hin, 1, € L1 = OcKihy
0#y€elF,
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while if E/F is ramified

ri(é1) = hi + Z n_l(y)htno,,,ly €Ly =0OcKihy
075?/615‘(1

and it follows that A1y (¢1) € Ly, so that A\='f; € ro(r7 1 (L1)) C 2(Lo).

But Ly = Oc Ko f1, hence A= Lo C z(Lo). If the sequence of zigzags (2™ (Lo))n>0
is finite, then we must have A™! € Og.

By Corollary 6.18, if \™* ¢ O¢ then ind$y is not integral. O

This also yields the easiest case for sufficiency, namely

Corollary 7.8. If A € OF, then ind$x is integral.

Proof. Consider the description of L/1 given above. If A € OF, it follows that
A_loctht = OcKihs = L.

Since 1(¢1) € Ly, it follows that L) = L;. Thus we see that r5 ' (Lo) = r7 *(Ly),
and by Corollary 6.16, we see that ind%y is integral. O

Next, we turn to compute an explicit basis for Lll.

Lemma 7.9. For any z € F, when E/F is unramified, and for any z € F,
when E/F is ramified, denote

H, =tng .1, -1r1(¢1) € Lll

Then L} is spanned over O¢ by

{HZ}ZE]F; ) T1(¢1)) {Ailh‘tno _”_12} _ A71}7’1

’ z€F,
when E/F is unramified, and by
-1 -1

(H)oer, 160 {3 hon, o) }Zqu . A

when E/F is ramified.

Proof. Note that using Lemma 6.19, one has

Hkr)/M(kp)Z_(kr) EJF  unramified

K. /I ~ Ki1/K1(1) =~
1/ . /I/Kl(l) {H/(kF)/M'(kF)Z/_(kF) E/F  ramified

where Z_(kp) = sZ(kr)s and Z_(kr) = sZ'(kr)s. Hence, by the Bruhat
decomoposition, a system of representatives for K /I is

{Ltng 1, | z € F, } if E/F is unramified
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{1, tng -1, | z € Fy} if E/F is ramified

Note that as Y(Ly) is I-invariant, and 7, is I-equivariant, it is enough to con-
sider the action of these representatives in order to obtain an explicit description
of L. That is

L) = Ocri(¢1) + Z Octng r—1.11(¢1) + ALy

z€Fg

when E/F is unramified, and

L/1 = Ocr1(01) + Z Octng r—1.11(¢1) + A1 L4
z€lF,

when E/F is ramified, but this is just the required result. O

Lemma 7.10. Recall that we have defined Corollary 6.18, z(Lo) = Ko-ro(r=(Ly)).
We now have, when E/F is unramified

¢\ -ro(¢s) € 2(Lo)
and when E/F is ramified
gA - ro(os) € 2(Lo)

Proof. We first note that when E/F is unramified

H, = tnO,ﬂ-*lz | ha+ Z n*<y)htno,w*1y =
0#y€el,

=h+m @i+ Y W) Y =2) hing a0 =
0,24y€EFy

=@+t Y T 2 0 W) heny ., =
0,—z—1#£yel,

=hs+n"(2)h1 + Z (1 +yz)- hing 1,
0#y€elFq
If E/F is ramified, we see that

Hz = tnO,Trflz . hl + Z n_l(y)htno‘ﬂfl =

=he+n D+ DY W) W= 2) Py =
0,z7#y€F,
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=n ' @Dh+he+ Y Ny ) T W) ey, =

0,—z~1#y€el,
=h+n @+ D> T (U +y2) e,
0#y€elF,

When E/F is unramified, consider the sum

YoH=¢"Phi+ DY @) ha+ Y Y n (L +y2) hen,

z€Fg z€Fg 0#£y€eF, zeFy

and when E/F is ramified, consider the sum

ZH fqhtJan 1 -hy + Z Zn (1+yz)- htno,,r—ly

z€F, z€F, 0#y€F, z€F,

Now, for any 0 # y € F and for any z € F', as y = —y and z = —%, we see
that 1 +yz = 1 +yz, hence 1 +yz € Foi/2.

Moreover, if 1+ yz; = 1+ yzo, then as y # 0, it follows that z; = 29, hence the
map z — 1 +yz from F_" to F1/2 is injective, and as these are finite sets of the
same size, bijective. The same holds for the map z — 1+ yz: F;, — F,.

It follows that 3 cp- (1 +y2) = 2 pep , , 17(2)- AlsO, 3 cp, (1 +yz) =
Yer, 1 ()
When E/F is ramified, it immediately follows that if n # 1

:E: H, = qht

z€F,

while if n = 1, then

> H.=qhi+(q—Dhi+(@=1) Y huy_\ =ghi+(q—1)-11(¢1)
z€lF, 0#y€el,

Therefore, in any case, gh; € Ll17 hence

gA - D fan=70(aAs) = ro(r (ghe)) € ro(ri (Ln)) C 2(Lo)
neN’(kr)

When E/F is unramified, by Lemma 2.24, we see that :
Iftnt P, 7é 1, we have

> H.=q"h

z€Fg

If n [Fxl/zz 1, and p # 2, we have

> H.=¢"Phi+ (@ =0 O+ (@ =1 Y huny

zeFy 0£yeFy
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and if 7 [Fx1/2: 1, and p = 2, we have
q

Y H.=¢"Phi+ (@ =D+ @ =1 Y g,
2€F; 0#£y€Fy

It follows that if 7 [px = 1, and p # 2 then
ql 2

Yo H.=q"hit (@ =D @) (bt D 0 (@hen, L, | =

zeFy 0#£y€eF;

=q"Ph+ (@ =1 [+ DY 0 @) by, | =6 PRt (1) 11 (61)
0#y€elF,

while if 5 [px =1 and p = 2, then
4172

Yo H.=q"Phi+ (@ =1 [t DY by | =
z€Fy 0#y€elFy

=¢" Pl (@ P=0) [+ D W)y, | = PP 1) 11 (1)
0#£y€Elr,

In any case, we see that ¢*/2h, € L/17 hence

2N N fan = 10(@220) = ro(ri 1 (@?he)) € ro(r (L)) € 2(Lo)
neN(kr)

O

Next, we compute the O¢ Ky-module M generated by ro(¢s) (which is ZneN(kF) fon
if E/F is unramified, and 3~ x50 fon if E/F is ramified).

Proposition 7.11. Set My = OcKq - 1o(¢s), and for any n € N(kg), denote,
when E/F is unramified,

Z fsn’

n’€N(kr)

when E/F is ramified, denote for any n € N'(kp)

F, =ns Z fsn’

n'eN’(kr)
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Then My is spanned over O¢, when E/F is unramified by
70(¢s),  {FntneN(kr)

and when E/F is ramified, by
To(¢s)s  {Fw tneN (kp)

Proof. Note that using Lemma 6.19, one has

G(kr)/Z(G)-N(kr) E/F  unramified

Ko/Z(G)-I(1) ~ Ko/Ko(1)/2(G)-1(1)/ Ko(1) = {oa(kp)/z(o )N'(kp) E/F ramified
3) F

By the Bruhat decomposition
G(kr) = B(kr) [ [ B(kr)sN(kr) = M(kp)N(kr) | [ M(kp)N(kp)sN(kr)

Os(kp) = B'(kp) [ [ B (kr)sN'(kr) = M/ (kp)N' (k) [ [ M (kp)N' (kp)sN' (kr)

It follows that a system of representatives for Ko/Z(G) - I(1) is

{da,dens |a € F)y, neN(kp)}

when E/F is unramified, and

o ) a 0 0
{da,dans |a € FY, nEN’(k:F)}, d=[0 1 o0
0 0 at
when E/F is ramified.
As for any n., € N(kr) and any a € F
0 0 1 1 ¢ vy a 0 0
SNeyde = 0 1 0 0 1 -¢ 01 O =
100 00 1 00 at
0 0 1 a ¢ aly 0 0 at
= 01 0 01 -a'e|=|01 —-a'le|=
1 0 0 0 0 at a ¢ aly
al 0 0 0 0 1
= 0 1 0 0 1 —a'e =
0 0 a 1 a'e a'laly
al 0 0 0 0 1 1 atc a'aly
= 0 1 0 010 0 1 —a e =
0 0 a 1 00 0 0 1

= da—l Sna—lc,a—lafly
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we thus have for any g € Ky, when E/F is unramified,

do f1(9) = {g;(gda) ong(eg) € B(kr)po(dy-1) _

=n(a)fi(g)

0 else

_ {X(g) -n(a) polg) € B(kr)

~ x(gdanzls) = x(gn,. gz, sda—1)  po(g) € B(kr)po(sneyda—1)
dafone,(9) = 0 else

n*(a) - X(9n02 gays)  Po(9) € B(kr)po(snac,aa .
= ( ) ( ,aay ) O( ) ( ) 0( y) =1 (a)fsnacﬁaﬁy(g)
0 else
showing that
dof1 = TI(Q) - f1, dafS’I’Lc‘y = n*(a) ’ fsn,,,c,,,,ay (72)
Similarly, as for any ¢ € F, and any a € F
/ 00 1 1 ¢ -2 a 0 0
sned, = 01 0 01 —c 01 0 |=
1 0 0 0 0 1 0 0 ot
00 1 o ¢ —a'< 00 a!
- 010 01 —alc |=[(01 —ale |=
100 00 at a ¢ —a'S
a—l 0 0 0 0 1
- 0 10 0 1 —ale |=
0 0 a 1 alc —a_2§
al 0 0 0 0 1 1 ale *a72262
_ 0 1 0 0 1 0 0 1 —ale |=
0 0 a 100 0 0 1

= d,-185n,-1,

we have for any g € Ky, when E/F is ramified and p # 2,

d. fi(g) = {gc(gda) Zzg(g) € B'(kp)po(d,—1) _

- {x<g> (@) pola) €Bkr) _ oy g )

0 else

0 else

, / _1 _ _1 / . B/ / .
& fur (g) = {x<gdanc s) = x(gnatsd, ) polg) € B'(kp)po(sned, 1) _
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= 7771 (a')fsnac (g)

_ {nl(a) “x(gnads)  polg) € B'(kr)po(snac)
0 else

showing that

d;fl = 77(@) ' fla d:zfsnc = 77_1(@) ' fsnac (73)
When p =2 and E/F is ramified, we see that
) 0 0 1 1 0 wy a 0 0
snoyd, = | 0 1 0 0 1 0 01 0 |=
1 0 O 0 0 1 0 0 a!
0 0 1 a 0 aly 0 0 a!
= 0 1 0 0 1 0 = 0 1 0 =
1 0 0 0 0 a! a 0 aly
al 0 0 00 1
= 0 1 0 0 1 0 =
0 0 a 1 0 a %y
at 0 0 0 0 1 1 0 a %y
= 0 1 0 010 0 1 0 =
0 0 a 1 00 0 0 1

= d, 18N0,q-2y

so for any g € Ky

X(gdang ys) = X(gn(;}]?ySd;—l) po(g) € B'(kr)po(snoyd, ) _
0 else

d, fony., (9) = {

_ {n‘l(a) X(gng 42,5)  pol9) € B (kr)po(sno.azy)

_ -1
0 else = (G')fsno)agy (g)

showing that d;fmo,y =n"Ya) - Fsng a2,

As n¢y > Ngeaay 1S bijective on N(kr), we see that

Ocda Z fsn = OC’U*((I) Z fsn

TLEN(k‘F) TLEN(kF)

As n(a) is a unit (note that 7 is a character of a finite group), we have

Ocda Z fsn = OC Z fsn

neN(kr) neN(kr)

Similarly, when E/F is ramified, we see that ¢ — ac and y ~ a®y are bijective
on F,, hence

OCd:J, Z fsnu = Ocn_l(a) Z fsnc = OC Z fsnc

c€F, celF, celFy,
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and when p = 2

Ocdy, Y feny, =O0cn™ (@) Y fang, =00 D fono,

y€Fq y€F, y€F,

Next, note that, for E/F unramified,

7! o—yle 1
SNeyS = 0 —ylyg -¢ STy—1¢ 41
0 0 Y

if (¢,y) # (0,0) (note that y = 0= ¢ =0), and forE/F ramified, if p # 2,

2 2 1

yb 0 1
SNg,yS = 0 =1 0 |sngy—
0 0 y

if y # 0.
Hence we have for any g € Ky, for E/F unramified,

nazaﬂ<g>=aﬁ<gnhzs>=:{*‘g”“z) polgmnss) € Bl

0 else

:{nw pol9) € Blkr) _

0 else

while for F/F ramified, p # 2,

npsfs(g) = fs(gnes) = {X(gnb) polgnes) € BY(kr)s =

0 else

_{Mm;mwew@m_h@)

o else

and for E/F ramified, p = 2,

no25fs(g) = fu(gno.os) — {X(gno,z) po(gno,zs) € B/ (krp)s _

0 else

:{wamweﬁ%ﬂ:hw)

0 else
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Further, for any (c,y) # (0,0), when E/F is unramified,

—1
X(gnb,=5n¢ S)  po(gne,zs) € B(kr)po(sne,
nb,zsfsncyy (g) = fsnc,y (gnb’zs) — {0< Y ) els(e ) ( ) ( y) =

_ {x@nb,zsn;;s) po(9) € B(kr)po(sneysny L) _

0 else
] L fyflc 1 -
_ x|onts| 00—yl e po(g) € B(kr)po(sni) _
0 0 Y
0 else
— —1
9) - x(gnss) po(g) € B(kr)po(sns _
(@) - x ( ) po(9) € B(kr)pol ):n(y)~f‘m*(g)
0 else

where n, = Myt y—1 45 4+y—1he

Similarly, for ¢ # 0, when E/F is ramified, and p # 2,

B ) x(gnesnzts)  po(gnes) € B'(kp)po(sne)
15 fon, (g) = fsn. (gnbs) = {0 else =

- {X(gnbsncls) polg) € B (kp)po(sncsny, ') _

0 else
—2 o2z N\ !
_1 C c ,
x| s| 00 -1 —c po(g) € B'(kp)po(sn_ze—1-p) _
0o 0 -<
0 else
2 —

i (=5) x(9n7ha ) polg) € B (Er)po(snos ) _ (&
- =N\—5 'fsn_QC_1_b(g)

0 else 2

and for y # 0, when E/F is ramified and p = 2,

—1 /
ng.»SNg 5 S ng..s) € B (k sn
n0725fsn0‘y(g) = fsno,y (gno,zs) — {())((g 0, 0,y ) Z;S(eg 0, ) ( F)p()( O,Q) _

_ Jxlgnozsngys)  polg) € B (kr)po(snoysng.) _
0 else
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-1

x| 9n5,..5 0 —1 0 po(g) € B'(kr)po(snoy-142) _

0 else

_ [0 x (9m00025) olo) € B hrdsnogee .
B B Mo, y*1+z
0 else
These show that for any ny , € N(kp), when E/F is unramified,
nb,zsfs = f17 nb728f87lc,y = 77(?) . fsny—lcibyy—l+z+y—1gc (74)

and for any b € F,, when E/F is ramified, p # 2,

c?
nbsfs = fla nbsfsnC =" (2) : fsn72cf17b (75)

while for any z € F,, when E/F is ramified, and p = 2,
no,z5fs = f1, 1028 fsne, = n(y) - fsno‘yqﬂ (7.6)

Therefore, for E/F unramified, we have

F = Fnb . = MNpzS Z fsnc’y = fl + Z 77@) : fsn* =
ne,yEN(kF) 0#n. 4 EN(kF)
= fi+ Z n*(y + z _Bc)fsnc,y
Ne,y€EN(kF)

where the character n* of Fy is extended to a function on Fy vanishing on 0.
For E/F ramified, when p # 2, we have

CQ
Fb = Fnb = Nps Z fsnc = fl + Z n (_2> 'fsn72c_17b =

c€F, 0#£ceF,

=h+>. 0 ( b+c))fwc

celF,

and for F/F ramified with p = 2, we have

Fz = Fnoyz = TNp,z$ Z fsno,y = fl + Z n(y) ' fS7LO,y_1+z =
yEF, 0F#y€eR,
= f1+zn y+zf5’ngy
y€lF,
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We have, combining with (7.2), when E/F is unramified

dan,z = danb.zs Z fsncry = n(a)fl—’_n*(a’) Z 77* (y—’_z_gc)fsnac,agy =

ncnyN(kF) nc)yEN(kF)

=nla) | 1+ Z n*(a@y + aaz — a@bc) fsp,. vay | =
Ne,y EN(kF)

= 77(“) fl + Z 'r]* (y + aaz — @C)fsnc‘y = 77(@) . Fab,aaz
ne,y€EN(kFr)

As n(a) is a unit, we have

Ocdanb,zs E fsnc,y = OCFab,aEz
ne,y€EN(kFp)

Similarly, when E/F is ramified and p # 2, we have

dyFy = dynps Y fan, =n(a)fr+n7 (a) Y 07! ( b+ o ) fsnae =

celF, celF,

=n(a) | i+ > 0 (—az(b;c)Q) Finae

celF,

=n(a) | A+ 0" <ab+)) fone | =mn(a) - Fap

celFy

As n(a) is a unit, we have

Ocdynps > fan. = OcFap

celF,
and when E/F is ramified with p = 2, we have

dan:danszZfsno,y: ( f1+77 1 ZU y+zfsn0ay:

y€eF, yeF,

=n(@) | fi+ D0 (@W+2)) fony.o,

yelF,

= 1(a) f1+277 y+azfm0y =1n(a) - F,2,
yelF,
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As n(a) is a unit, we have

Ocd;no,zs Z fsng’y = OCFa2z

yqu

We deduce that M, is the Oc-module generated, when E/F' is unramified, by

Z f@n, neN (kr)

neN(kr)

when E/F is ramified, and p # 2, by

Z fsnca (Fb)bEFq

celF,

and when E/F is ramified and p = 2, by

Z fsno,y, (Fz)zqu

IS
which is the statement. ]

With this in hand, we may complete the proof of the necessity of the criterion.

Proposition 7.12. Let x : E* — C be a tamely ramified character, such that
ind$x is integral. Let A = x(m). Then A¢® € Oc.

Proof. Consider the sum, when E/F is unramified,

Z Fn = q3/2f1 + Z Z ﬁ*(y+Z—EC) fsnc,y

neN(kr) ne,y€EN(kr) \np,.EN(kr)

We also note that n.y - 1y . = Ny42 y+2—tbe, hence we see that

Yo o nlytz-bo= > (2

ny, EN(kr) ny,,EN(kr)

By Lemma 2.24, we see that:

If n is trivial, (the unramified case)

Z Fb,z = q3/2.f1 + (q3/2 - 1) Z .fsnc‘y

ny, - EN(kF) ne,y€EN(kFp)
Ifn Fx 7£ 1, then
Z Fb,z = q3/2f1

ny,-EN(kp)
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Ifnle,,=1 and p # 2, then for any i € F

Z F,, = q3/2f1 . q1/2(q1/2 — (i) - Z fone,

Ny, EN(kp) ne,yEN(kr)

Ifn []qu: 1 and p = 2, then

Z Fb,z = q3/2f1 - q1/2(q1/2 - 1) ’ Z fS’n(:,y

ny,EN(kr) ne,yEN(kp)
In any case, we see that ¢3/2f; € My. Being Ko-stable, by Proposition 7.3, My
contains ¢%/2Ly.

By Lemma 7.10, the zigzag 2(Lo) = Ko - ro(r; *(L1)) contains ¢'/2A\Mp, hence
2
q )\LO

When E/F is ramified, we consider the sum

Y FB=qh+ ), Zn_l(—(bzc)2> fsn.

beF celF bel
q q q

when p # 2 and the sum

ZFZZQf1+Z 27771(@/4‘2) Fono.,

z€F, yeF, \z€F,

when p = 2.

Note that ny - ne = npye and ngy - 10,2 = Noy42. AS b= np, 2 = ng . 1 kg —
N’(kp) are bijective, we see that

5o (2522 ()

beF,

Also

YoMyt = 1)

z€F, z€F,

By Lemma 2.24, we see that:

If n is either ¢, or trivial

1
ZFbZQf1+77 9 (¢—1)- Zfsnc
beF, c€F,
else

> Fy=qh

beR,
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Further, when p = 2, we have if n =1

ZFZZQflJF(q*l)' Z fsno.,

z€F, yeF,

jg: F, ::qfl

z€F,

else

In any case, we see that ¢f; € M,. Being Kj-stable, by Proposition7.3, M
contains qLg.

By Lemma 7.10, the zigzag 2(Lo) = Ko - ro(r; *(L1)) contains gAMy, hence
*ALg.

Thus in all cases, z(Lg) contains ¢?\Lo.

If the sequence of zigzags (2™(Lo))n>0 is finite, then ¢\ € Oc. By Corollary
6.18, if ¢?\ ¢ O, then ind%y is not integral. O

Corollary 7.13. This shows that for ind%x to be integral, we must have 1 <
Al < 1a2.

Remark 7.14. Note that by Corollary 6.21, as the contragredient representation

of ind§x is indGx 'w?, and x 'w?(m) = A71¢72, we see that if ind%x is

integral, so is ind%x~'w?, showing that 1 < ’)\—1q—2’ < |g7?|, hence 1 < |A| <
|g~2|. This shows that our condition is compatible with Corollary 6.21.

It is also compatible with the isomorphism indgx ~ ind%x*wz by the same
computation.

7.8. Proof of sufficiency

We have established the necessity of the condition, and turn now to sufficiency.

We assume, then, that A™! € O¢ and ¢?\ € O¢. Further, by Corollary 7.8, we
may assume A ¢ Oc¢.

To go further, we need a Lemma.

Definition 7.15. For a function a : F; — O¢ and a character n : F)* — og,
we consider the convolution of a with n, denoted by a % 1, and defined by

(@xn)(y) == > a(=2)n(y + 2)

z€F,

for all y € F,;, where we set n(0) := 0.

Definition 7.16. We say that a * 7 is constant modulo A~'O¢ if there exists
some ¢ € C such that (axn)(y) —c € A"1O¢ for all y € F,.

Lemma 7.17. }°__; a(z) € q-Oc+A"1-O¢ if axn is constant modulo A" O¢ .
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Proof. When the character 7 is trivial, the function a xn +a = Zzqu a(z) is
constant. If a * ) is constant modulo A~'O¢, so is a, and

D a(z) €q-a(0)+ A '0c Cq-Oc+ A" Oc
2€F,

When the character n is not trivial, we use the Fourier transform. We replace
C by a finite extension in order to find a non-trivial character ¥ : F; — O¢ to
define the Fourier transform

F)=> v f(2)
z€F,
of a function f: F, — C.

We denote by R the space of integral functions f : F;, — O¢, by R the image
of R by Fourier transform, by dy € R the characteristic function of 0, and by
A € R the constant function A(y) = 1.

The properties of the Fourier transform yield

f=aqf,A=qd, 0 =A,7(0)=0

7j(z) is a Gauss sum, and 77(3:)77/—\1(32) = qn(—1) ifz € F¥. The Fourier transform
of a convolution product f * g is the product of the Fourier transforms, i.e.

Frg=1-9

The lemma then states that a(0) € (¢ + A71)O¢ for all a € R such that axn €
OcA 4+ A"'R. By Fourier transform axn € OcA 4+ AR is equivalent to
a-1n e Ocqdy + AR, Multiplying by n—1, which vanishes only at zero, yields
for nonzero elements

— N

qa = qa(0)6g + X111 o

for some ¢ € R. The function b = ga belongs to ¢R. We have b = 3(0)50 +
A 1p=1. ¢ and by Fourier transform b = BA + A~ - =1 % ¢ where b(0) =
B+ A"t (7t % ¢)(0), hence B € (¢ + A7!)- Oc. But a(0) = 3, hence the
result. O

We return to the proof of Theorem 7.1. By Lemma 7.9, the Oc-module L'1 =
Kinm (ral(Lo)) =K1 - (Ocri(¢1) + Ocri(¢s)) is spanned over O by

{Hz}ze[gq— yT'1 (¢1)7 {A_lhtnoyw,lz }ZE]FQ_ ) >\_1h1
if E/F is unramified, or by
{Hz}zqua 1 (¢1)7 {Ailhtnoﬂr,lz }ZEJFq ) Ailhl

if E/F is ramified.
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The Oc-module 1 (L)) = (L})'™ is spanned over O¢ by (A"1Ly)TM) | ¢, and,
when E/F' is unramified, by linear combinations (we let i € F be arbitrary)

a(—z/i)H. = | Y a(=2) | het | D al=2)nt(z0) | - ha+

2€F; zE]Fql/Q ze]Fql/2

+ Z Z a(—z)n* (1 + yzi) hmowaly:

0£yeF; \#€F,1/2
= a(0)-hy+(axn)(0)-n* (i) -ha+* (D) D " (v)-(axn )iy~ ) heny oy, =
0AyeF,
=a(0) - by + (ax1")(0) - 0" (i) - r1(d1)

for all functions a : F 12 — Oc¢ such that a x n* is constant modulo A"1Oc,
where n* is identified with its restriction on IFle /2

When E/F is ramified, it is spanned by linear combinations

Z a(—z)H, = Z a(—z) | -he + Z a(=2)n"H2) | -hy +

z€F, z€F, z€F,

+ Z Z a(—2)n (1 + y2) ht”o,w—ly =

0#yeF, \z€F,

=a(0)-he+ (axn )O0) b+ D> @) (axn ) uny L, =
0#y€F,
=a(0) - he + (axn71)(0) -9~ (0) - ()
for all functions a : F; = O¢ such that a * n~! is constant modulo A~*O¢.
As (a*n*)(0) € Oc and a(0) € ¢'/2- Oc +A~! - O¢ by Lemma 7.17, we obtain
when E/F is unramified that
riH(Ly) = Ocdr + (¢2X - Oc + Oc) - s
When E/F is ramified, as (a * 7*)(0) € O¢ and a(0) € ¢- Oc + A~ - O¢ by
Lemma 7.17, we obtain

riH(Ly) = Océr + (ah - Oc + Oc) - &
Note that when E/F is unramified, if ¢'/2\ € O¢, ie. |\ < |q*1/2‘, we are
already done, as r7 1 (L)) = 75 (Lo) = Oc 1 + Ocs.

Similarly, when E/F is ramified, if g\ € O¢, i.e. |A\| < |¢!|, we are also done,
as i (Ly) = rg ' (Lo) = Océr + Ocds.
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Assume, if so, in the case E/F unramified, that ¢'/2\ ¢ O¢, so that r; (L) =
Ocor + ¢/*AOc s, and in the case E/F ramified, that ¢\ ¢ O¢, so that
TN LY) = Ocdr + qAOc¢,. Then if E/F is unramified,

2(Lo) =Ko | Ocfi+q"PX0c - > fan | = Lo+4"*AMy
neN(kr)

is the O¢-module spanned over O¢ by (see Proposition 7.11)

Lo N Y2 fons (42X F)

neN(kr) neEN(kr)

while if E/F is ramified,

z(Lo) = Ko+ | Ocfi + ¢ \O¢ - Z fsn | = Lo + gAMy
neN’(krp)

is the O¢-module spanned over O¢ by (see Proposition 7.11)

Lqu)" Z fsn7(q)‘Fn)n€N/(kF)
neN’(kr)

The O¢-module 75 (2(Lo)) = (2(Lo))'™) is spanned, when E/F is unramified,

1(1)

over Oc by Ly' ", ¢*/?\¢s and by the preimages of

> a(-b3) F. = > a-b3) |- A+
ny - EN(kp) ny, - EN(kF)
_|_ Z Z a(_b’ ?) . ,r]*(y —|— z — BC) fsnc,y

ne,yEN(kr) \np,.EN(kr)

for all funcfions a:FY — ¢'/2)\O¢ such that (c,y) — > eN () A0, Z) -
n*(y + z — be) is constant modulo O¢.

When E/F is ramified, and p # 2, it is spanned over O¢ by Lé(l), g @, and by
the preimages of

S anf= ( Lan | 2 oo ((E55) ) s

beF, beF, ceF, \beF,

for all functions a : Fy — gAO¢ such that ¢ — Zbqu a(—=b)-n~t (—M) is
constant modulo O¢.
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When E/F is ramified and p = 2, it is spanned over O¢ by Lé(l), g\ \os and by
the preimages of

Yoal=z)-Fo= (Y al=2) | fi+ D | D al=2) 0 y+2) | fan,

z€F, z€F, yeF, \zeF,

for all functions a : F; — gA\O¢ such that y — >y a(—2) - nt(y+2) is
constant modulo O¢.

Definition 7.18. Let us now define for any two functions a,0 : N(kp) — C
the convolution of a with 8, which is the function a x 6 : N(kp) — C defined by

(ax0)(z)= > a(n')-0(xn)

neEN(kr)

Or more explicitly

(a’ * 77) (nc,y) = Z a(n*b?) : e(nb+c,y+z—gc)

ny,,EN(kr)

This convolution operation is associative, since for any = € N(kr) we have

(@0p)@) = 3 @On )oen) = S 3 aly ) om ) on) =

neN(kr) neN(kr) yeN(kr)
= > aly™) Y. 0 Hd@yn) = D alyh)-(0x9)(xy) = (ax(0x9))(x)
yeEN(kr) n€N(kr) yeN(kr)

It is also clearly C-bilinear.

Similarly, we define a convolution on N’(kr) in the same manner.

Definition 7.19. For a character n : F; — Of , we extend it to a function
n : Fqg = Oc¢ by setting 1(0) := 0, and define a function 7 : N(kr) — C by
setting for any n; . € N(kp)

(np,2) = 1(2)
If E/F is ramified, we define 7(ny) = —% if p#2, and 7(no,.) = n(z) if p=2.

Before we prove a similar proposition for this case, we prove a little lemma.

Lemma 7.20. Assume n # 1. Then for any 1 # n € N(kp), we have, if E/F
is unramified,

-1 nle, .71
S — V200 2 — 1Vp* (i) - Fi(n) — 1 -1 )
(7 xn*)(n) = 4 —a""*(q Jn* (@) - (n) Nle,,=1 p#
—q"?(¢"* = D)i(n) — 1 Nl ,,=1 p=2
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and if E/F is ramified, and p # 2,

-1 n#egpln#l
(77*77_1>(n): q_2 77:5q717”7£1
qg—1 n=1

Proof. Before we proceed, we note that for any z € F, , as the norm map
Fy — F,1/2 is surjective, there exists b € F, such that bb = —(z +Z).
Moreover, if z € F_, it follows that b = 0 is the only possible value for b, and

1/2

else, we have |IF;| = ¢'/% + 1 different solutions for this equation.

If (¢,y) # (0,0), in particular y # 0, so we may consider the set A = {% | z € F;} =
1 _

5 F,.

For any a € Fy, if 1 #a ¢ A, thena-y ¢ F, hence a -7+ a-y # 0, so there
exist ¢ + 1 different values of d € F, such that dd=—a-5—a-v.

For each such value, we let b = <4

2 = ¥=b¢ Then
a—1

, which is well defined since a # 1, and

y—be
e

1+

_ 1 _
ayt+ay—-y-y—2¢—cd—cd+cc+cd+ed+dd
N (a—1)(@—1) N
 (ay+ay+dd) — (y + 7 + co) 0
B (a—1)@-1) B
If 1 # a € A, then we see that there exists a unique such value of d, and b, z are
chosen once more in the same way.

For a = 1, we seek solutions for y — bc = 0. In such a case, we have either ¢ = 0
(equivalently, y € F,orle A), when we do not have any solutions, or ¢ # 0

1/2

(equivalently, y g¢F,; or1¢ A), when b = % yields ¢'/# solutions. This shows

that when ¢ =

r(1+5) = ¥ @@ 0 S -

1#a€A agA

(g o)

ag A

1#ny, zEN(kF)

and when ¢ # 0

> (i

1#ny . €N(kFr)

) Yo (@)+¢ P (D) +(d+1)- D n(a) =

acA 1#a¢ A
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= (Z (@) + (@2 1)) n*(a)> -1

a€A a¢ A

We note that ) ., n*(a) = n(y) ~Za€M n*(a), so in any case we are interested
in computing the value of

nw)- | D@+ @+ nt@)] -1

a€clFy agFq

Now, we have already seen in Lemma2.24, that if n |r , ,= 1, ZaelF; n*(a) =
q'/? -n*(i) if p # 2 and q if p = 2, while if thl/z?é 1, ZaeF; n*(a) = 0.

Note also that Za@; n*(a) = — ZGE]F; n*(a), since n # 1 is nontrivial. There-
fore, if n [r ,,,= 1, then

q1/2

(ﬁ*ﬁ*)(nay) =n(y)|—q- Z n*(a) | -1 =

a€lFy

—q" (g 2 = Dm*(i) - m(y) =1 p#2
—q"*(¢"* = )n(y) — 1 p=2

Next, consider the case E/F is ramified and p # 2. Then, as for any ¢ # 0, the
map b+ 1+ 7 is bijective F — F,\{1}, we see that for ¢ # 0

_o _ c\? _
oo = X ot (145)) = X 0t @)
0#£beF, 1#acF,
and by Lemma 2.24, it follows that

-1 777é5q71

(M*n=1)(ne) = {q 2 n=epl

When ¢ = 0, we see that (7% 7~1)(1) = > ber> n~t(1)=q-1.

This concludes the proof of the lemma. O

We shall prove the following proposition.

Proposition 7.21. When E/F is unramified, 3, cni,.) a(n) € Oc if ax1) is
constant modulo Oc. When E/F is ramified, 3, x4,y @(n) € Oc if ax1j is
constant modulo O¢.

Proof. When E/F is ramified and p = 2, this is the result of Lemma 7.17. From
now on, when E/F is ramified, we assume p # 2.

When the character 7 is trivial, the function a 7 +a = >, N, a(n) is
constant. If a * 7 is constant modulo O¢, so is a, and

Z a(n) € ¢*?a(1) + Oc C *NO¢ + Oc C O¢
neN(kr)
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Similarly, when E/F is ramified, and n = ¢4 or trivial, the function a 7 +a =
ZneN/(kF) a(n) is constant. If a 7 is constant modulo O¢, so is a, and

Z a(n) € ga(1) + Oc C ¢*NO¢ + Oc C O¢
neN’(kr)

This settles the case of xy unramified. We turn to the tamely ramified case. If
E/F is ramified, we may further assume u # &,.

We denote by R the space of integral functions N(kr) — O¢, by g € R the
characteristic function of 0, and by A € R the constant function A = 1.

Then, when F/F is unramified, we have a € ¢*/?AR such that axij € C-A+R,
hence there exist a € C' and ¢ € R such that

axn=al+¢ (7.7)

When E/F is ramified, we have that a € gA\R. Let us convolve by n* when
E/F is unramified, or by n~! when F/F is ramified. Note that we have the
following identities

7)) (ney) = Y. @) -7 y+z—be) =
np, - EN(kr)

LB ()

1#ny, . €N(kF) 1#ny, . €N(kF)
= b? _ b+ c)? _ c\?2
(7 n~")(ne) = Zn(—2> ! (—(2)) = > ! ((1+b) )
beF, 0£bEF,

It follows that when E/F is unramified, (7 * 79)(1) = N(kp)| — 1 = ¢*/2 — 1,
and when E/F is ramified, (7+n~1)(1) = ¢ — 1 (see Lemma 2.23).
Now, by Lemma 7.20 for  : F* — C, one has when E/F is unramified

q3/2-60—A ’I][Fql/,z;él
et =140%% 00— A= (@2 =) (i) ) nlr, =1 p#2
@26y — A — q1/2(q1/2 —-1)-7 nlr,,=1, p=2

and when E/F is ramified
el =q- 0 — A

Therefore, when E/F is unramified, if 9 [p ., # 1, from (7.7) we have

41/2
q3/2~(a*60)—(a*A):a*(qg/Q-éo—A):a*(ﬁ*ﬁ*):

=(axn) 0 =(a A+ ¢)sn* =a- (Axn*) +¢xn*
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and if E/F is ramified, we have
Q'(a*50)—(a*A)=a*(q'50—A):a*(ﬁ*n:1):

:(a*ﬁ)*nllz(a-A—l—qb)*ﬁ*:a-(A*n:1)+¢*n:1

However, note that for any function a, one has when E/F is unramified

(a*09)(ney) = Z a(n-vz) - 60(Myy e yrobe) = aney) = axdo =a
ny,,EN(kr)

and when E/F is ramified

(ax80)(ne) = Y a(n_p) - So(npse) = alne) = axdy = a
beF,

Furthermore, when E/F is unramified, we have
(a*xA)(ne,y) = Z a(n) = (Axa)(ney) = axA = Axa = Z a(n) | -A
neEN(kr) neN(kr)
and when E/F is ramified
(a*A)(ny) = Z alng) = (Axa)(n.) =axA=Axqg= Z a(ng) | - A
beF, beF,

In particular, if @ = 7} is inflated from some character, and E/F is unramified,

then
S o) => 0@+ @+ > nkz) =
np - EN(kr) z€Fy z¢Fq
0 NlE, .71
=q-a"?@2=n@) nle,,=1 p#2
—q"2(¢*? - 1) nle,,=1 p=2

if a =7, but E/F is ramified, then

HER

beF,

Therefore, subtituiting, we obtain, when 7 g . ,# 1, that if F/F is unramified

q1/2

3/2

a— Z aln) | - A=¢xn*€R

neN(kp)

q
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and if E/F is ramified

qa — Za(nb) A=¢pxnleR

beR,

However, as a € ¢*/?AR when E/F is unramified, we see that ¢*/?a € ¢?AR C
R, hence }_, cnx,) @(n) € Oc, as required.

Also, as a € ¢gA\R when E/F is ramified, we see that ga € ¢?AR C R, hence
>ver, a(ny) € Oc, as required.

Similarly, if n [ , ,= 1, we obtain from (7.7) either

ql/2

32 — Z a(n) | -A—q"*(¢"? — 1) (axq) =
TLGN(ICF)

q

=ax(¢** 85— A—q"?(¢"?-1)-7) =
=a-(Axp) +orng =—¢"?(¢"? — Do A+ ¢xn*

in the case p = 2, which after resubtituting, becomes

¢*Pa—| D an)|-A—q"P(¢"? = 1) =¢xnr
neN(kp)
or
¢Pa—| D an) | A= (@7 = Dni) - (axij) =
neN(kr)

=—¢"2(¢"? = )n* (i) -a- A+ g

in the case p # 2, which after resubtituting, becomes
a—| > am) | -A—=¢"(¢ =)= px
neN(kp)

In any case, by the same argument, since ¢'/*(¢"/* —1),7*(i) € Oc, we see that
2 neN(kp) @(n) € Oc, as required. B

Corollary 7.22. If \"' € O¢ , ¢ € O¢, then indgx 1s integral.
Proof. Returning to the Og-module r5 ' (2(Lg)) = (2(Lo))'™), we see that it is
generated by ¢1,¢'/?Aé, and by

S am )| - é+ (ax7)(0) - b

neN(kr)
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for all functions a : N(kr) — ¢'/2M\O¢ such that a % * is constant modulo
Oc. For such functions, by Proposition 7.21, we have }_, .n, a(n) € Oc

. hence the above functions already belong to Oc¢r + ¢'/?AXOc s, showing
that 75 (2(Lo)) = Oc¢r + ¢"/>AOc¢s = r~ (L), hence the coefficient system
corresponding to z(Lo), L1 yields an integral structure in ind$x, by Corollary
6.16. 0

Remark 7.23. (i) In Theorem 7.1, x(7) is a unit if and only if the character
x ® x1 of M is Oc-integral. By Corollary 7.8, in this case, L is the natural
Oc¢-integral structure of functions in indg(x ® x1) with values in Og. The
reduction of L is the ko-principal series of G induced from the reduction ¥ ®X;
of x ® x1.

a)?, where w(r) = 1/¢?. The

(ii) The unimodular character of P is d(p) ,
1), hence Theorem 7.1 and

= w(
contragredient of ind§(y ® x1) is indG(x ! w?® x
Corollary 6.21 are compatible.
Let xo(t) = X(t)xl(trl). Then D. Keys showed in Keys [18] that the represen-
tation

ind3(x ® x1) ~ indg(x*w? @ x1)
is reducible only when either yo = 1,w?, or xo € {nw1/2,nw3/2} and 7 [px=
NE/F> OF Xo | px=w but xo # w. The isomorphism is compatible with Theorem
7.1

(iii) Theoretically, there is no reason to restrict to the tamely ramified smooth
case, but the computations become harder when the level increases or when one
adds an algebraic part.

(iv) One should see ¢) as the limit at co of the integrality local criterion.

8. Application to reduction and k-representations

8.1. Reduction.

An R-integral finitely generated S-representation V' of G contains an R-integral
structure Ly¢ which is finitely generated as an RG-module; two finitely gener-
ated R-integral structures Ly, Llft of V are commensurable: there exists a € R

non zero such that aL s C L,ft, aLlft C Lyy.
Let z be a uniformizer of R and k = R/zR. When the reduction fft =Ly /Ly
is a finite length kG-module, the reduction L of an R-integral structure L of

V' commensurable to Ly, has finite length and the same semi-simplification as
I

Lemma 8.1. If the reduction L is an irreducible k-representation of H, then
the R-integral structures of V' are the multiples of L.
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Proof. Let L be an integral structure of V' which is different from L. Taking
a multiple of Ly, we reduce to Ly; C L and Ly, not contained in xL. The
inclusions

the right one being strict, and the irreducibility of Ly, /xL, imply L N Ly, =
xLyy, equivalent to L = Ly, because there exists no v € L and v ¢ Ly, such
that v € z7 ' L. O

In the integrality criterion (Proposition 6.13), when the properties of 2) are true,
the reduction of the R-integral structure Hy(L) of the S-representation Hy())
of G is the 0-th homology of the G-equivariant coefficient system defined by the
diagram

Lg

/

Loy

Ly

We have the exact sequence of SG-modules:
0 — indf Vo1 — ind§, Vi & ind%, Vo — Ho(V) — 0
of free RG-modules:

0 — ind{ Loy — ind%, Ly & ind§, Lo — Ho(L) — 0
of kG-modules:
0— Z?’Ld?fgl — md?(lfl D ind]G(OZO — HQ(Z) —0

8.2. k-representations of G.

Let k be a finite field of characteristic p. Consider an irreducible principal series
of G over k. It can be written as ind% (Y ® X1) for some lifts x, x1.

By Theorem 7.1, Remark 7.23 (i), and Lemma 8.1, it follows that each O¢-
integral structure of ind$(x ® x1) is a multiple of L which is defined in Remark
7.23 (i).

Therefore, an irreducible principal series of G over k is the 0-th homology of a
G-equivariant coefficient system.

Let p ® p1 be a k-character of M; its restriction to M (Og) is the inflation of a
N(F,)

k-character n®@mn; of M(F,). As before, (indg((ﬁ:)) (n® 771)> =C-p1®C- ¢,

where ¢1, ¢5 have support B(F,), B(F,)sN(F,) and value 1 at id, s, respectively.
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Proposition 8.2. The principal series indg(,u ® p1) is the 0-th homology of
the G-equivariant coefficient system defined by the tamely ramified diagram

(indG(pn @ p))

/

(indG(p @ pn) "

.

(indG(n @ pn))

inflated from the inclusions

N(Fq)

. .G(F, o 1G(Fy
(mdB((Fq))(n ® 771)) — anB((]Fq)) (n®m)

. H(F, ZF) e,
(mdM(wq))Z(Fq) (e 771)) = indyg) e,y (19 )

Proof. Let 4 ® uy : M — k* be a continuous character. There exists a mod-
erately ramified continuous character x ® x1 : M — OF lifting 1 ® p11. Apply
Theorem 7.1 and Remark 7.23 (i). O
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